scholarly journals Decreased mesenteric blood flow supplying retrosternal esophageal ileocoloplastic grafts during positive-pressure breathing

1994 ◽  
Vol 107 (1) ◽  
pp. 68-73
Author(s):  
L. Jacob ◽  
S. Boudaoud ◽  
O. Rabary ◽  
D. Payen ◽  
E. Sarfati ◽  
...  
1988 ◽  
Vol 69 (3A) ◽  
pp. A196-A196 ◽  
Author(s):  
L JACOB ◽  
O RABARY ◽  
S BOUDAOUD ◽  
D PAYEN ◽  
D GOSSOT ◽  
...  

Children ◽  
2021 ◽  
Vol 8 (5) ◽  
pp. 353
Author(s):  
Jayasree Nair ◽  
Lauren Davidson ◽  
Sylvia Gugino ◽  
Carmon Koenigsknecht ◽  
Justin Helman ◽  
...  

The optimal timing of cord clamping in asphyxia is not known. Our aims were to determine the effect of ventilation (sustained inflation–SI vs. positive pressure ventilation–V) with early (ECC) or delayed cord clamping (DCC) in asphyxiated near-term lambs. We hypothesized that SI with DCC improves gas exchange and hemodynamics in near-term lambs with asphyxial bradycardia. A total of 28 lambs were asphyxiated to a mean blood pressure of 22 mmHg. Lambs were randomized based on the timing of cord clamping (ECC—immediate, DCC—60 s) and mode of initial ventilation into five groups: ECC + V, ECC + SI, DCC, DCC + V and DCC + SI. The magnitude of placental transfusion was assessed using biotinylated RBC. Though an asphyxial bradycardia model, 2–3 lambs in each group were arrested. There was no difference in primary outcomes, the time to reach baseline carotid blood flow (CBF), HR ≥ 100 bpm or MBP ≥ 40 mmHg. SI reduced pulmonary (PBF) and umbilical venous (UV) blood flow without affecting CBF or umbilical arterial blood flow. A significant reduction in PBF with SI persisted for a few minutes after birth. In our model of perinatal asphyxia, an initial SI breath increased airway pressure, and reduced PBF and UV return with an intact cord. Further clinical studies evaluating the timing of cord clamping and ventilation strategy in asphyxiated infants are warranted.


1984 ◽  
Vol 246 (2) ◽  
pp. G195-G203
Author(s):  
R. H. Gallavan ◽  
Y. Tsuchiya ◽  
E. D. Jacobson

The purpose of this study was to determine the effects of nicotine on intestinal blood flow and oxygen consumption. The intravenous infusion of nicotine at doses corresponding to those experienced by smokers produced a transient increase in systemic arterial blood pressure and mesenteric blood flow. Subsequently a steady-state response developed that consisted of a reduction in mesenteric blood flow due to both a decrease in blood pressure and an increase in intestinal vascular resistance. This increase in resistance was probably due to increased levels of circulating catecholamines. The intra-arterial infusion of nicotine into the intestinal circulation at doses experienced by the average smoker had no effect on either intestinal blood flow or oxygen consumption. Similarly, under in vitro conditions nicotine had no direct effect on intestinal vascular smooth muscle tension. Thus, nicotine appears to reduce intestinal blood flow indirectly as a result of its systemic effects.


1991 ◽  
Vol 70 (1) ◽  
pp. 454-465 ◽  
Author(s):  
C. Beattie ◽  
A. D. Guerci ◽  
T. Hall ◽  
A. M. Borkon ◽  
W. Baumgartner ◽  
...  

Mechanisms of blood flow during cardiopulmonary resuscitation (CPR) were studied in a canine model with implanted mitral and aortic flow probes and by use of cineangiography. Intrathoracic pressure (ITP) fluctuations were induced by a circumferential pneumatic vest, with and without simultaneous ventilation, and by use of positive-pressure ventilation alone. Vascular volume and compression rate were altered with each CPR mode. Antegrade mitral flow was interpreted as left ventricular (LV) inflow, and antegrade aortic flow was interpreted as LV outflow. The pneumatic vest was expected to elevate ITP uniformly and thus produce simultaneous LV inflow and LV outflow throughout compression. This pattern, the passive conduit of "thoracic pump" physiology, was unequivocally demonstrated only during ITP elevation with positive-pressure ventilation alone at slow rates. During vest CPR, LV outflow started promptly with the onset of compression, whereas LV inflow was delayed. At compression rates of 50 times/min and normal vascular filling pressures, the delay was sufficiently long that all LV filling occurred with release of compression. This is the pattern that would be expected with direct LV compression or "cardiac pump" physiology. During the early part of the compression phase, catheter tip transducer LV and left atrial pressure measurements demonstrated gradients necessitating mitral valve closure, while cineangiography showed dye droplets moving from the large pulmonary veins retrograde to the small pulmonary veins. When the compression rate was reduced and/or when intravascular pressures were raised with volume infusion, LV inflow was observed at some point during the compressive phase. Thus, under these conditions, features of both thoracic pump and cardiac pump physiology occurred within the same compression. Our findings are not explained by the conventional conceptions of either thoracic pump or cardiac compression CPR mechanisms alone.


2004 ◽  
Vol 89 (4) ◽  
pp. 363-371 ◽  
Author(s):  
E. Grossini ◽  
A. Battaglia ◽  
G. Bona ◽  
D. A. S. G. Mary ◽  
C. Molinari ◽  
...  

Gut ◽  
1987 ◽  
Vol 28 (5) ◽  
pp. 583-587 ◽  
Author(s):  
M I Qamar ◽  
A E Read

PEDIATRICS ◽  
1977 ◽  
Vol 59 (6) ◽  
pp. 858-864
Author(s):  
G. Gabriele ◽  
C. R. Rosenfeld ◽  
D. E. Fixler ◽  
J. M. Wheeler

Continuous airway pressure delivered by a head-box is an accepted means of treating clinical hyaline membrane disease. To investigate hemodynamic alterations resulting from its use, eight newborn lambs, 1 to 6 days of age, were studied at 6 and 11 mm Hg of positive pressure, while spontaneously breathing room air. Organ blood flows and cardiac output were measured with 25 µ-diameter radioactive microspheres. Heart rate, left ventricular pressure, and arterial blood gases did not change during the study. Jugular venous pressures increased from 6.4 mm Hg to 18.6 and 24.2 mm Hg at 6 and 11 mm Hg, respectively (P < .005). Cardiac output decreased approximately 20% at either intrachamber pressure setting. Renal blood flow fell 21% at 11 mm Hg. No significant changes in blood flow were found in the brain, gastrointestinal tract, spleen, heart, or liver when compared to control flows. Of particular interest was the finding of a 28% reduction in ocular blood flow at 6 mm Hg and 52% at 11 mm Hg. From these results, we conclude that substantial cardiovascular alterations may occur during the application of head-box continuous airway pressure breathing, including a significant reduction in ocular blood flow.


Sign in / Sign up

Export Citation Format

Share Document