Topographical relations of intramembrane particle distribution patterns in human sperm membranes

1984 ◽  
Vol 89 (1) ◽  
pp. 42-55 ◽  
Author(s):  
Jan Tesařík
Author(s):  
N. Zhang ◽  
Z. Charlie Zheng ◽  
L. Glasgow ◽  
B. Braley

A model simulating the deposition of small particles with turbulent transport, sedimentation, and coagulation, is presented. Experimental measurements were conducted in a room-scale chamber using a specially designed sequential sampler. The measured deposition-rate data are compared with the simulation results. Distributions of particle-number density at different times are plotted in several viewing planes to facilitate discussion of the particle distribution patterns.


1978 ◽  
Vol 171 (3) ◽  
pp. 683-686 ◽  
Author(s):  
C G Gahmberg ◽  
I Virtanen ◽  
J Wartiovaara

Treatment of isolated human erythrocyte membranes at pH 7.4 with 0.1-0.5 mM-sodium periodate specifically cross-linked some of the spectrin polypeptides. Treatment with 2 mM-periodate resulted in complete cross-linking of spectrin and partial cross-linking of other polypeptides. The latter treatment also caused aggregation of the intramembrane particles made visible by freeze-fracturing. When membranes that had been treated with 2 mM-periodate were depleted of spectrin by treatment with 0.1 mM-EDTA, extensive aggregation of the intramembrane particles occurred.


2017 ◽  
Vol 6 (1) ◽  
Author(s):  
Lu Lu ◽  
Erina Baynojir Joyee ◽  
Yayue Pan

To date, several additive manufacturing (AM) technologies have been developed for fabricating smart particle–polymer composites. Those techniques can control particle distributions to achieve gradient or heterogeneous properties and functions. Such manufacturing capability opened up new applications in many fields. However, it is still widely unknown how to design the localized material distribution to achieve desired product properties and functionalities. The correlation between microscale material distribution and macroscopic composite performance needs to be established. In our previous work, a novel magnetic field-assisted stereolithography (M-PSL) process was developed, for fabricating magnetic particle–polymer composites. In this work, we focused on the study of magnetic-field-responsive particle–polymer composite design with the aim of developing guidelines for predicting the magnetic-field-responsive properties of the composite. Microscale particle distribution parameters, including particle loading fraction, magnetic particle chain structure, microstructure orientation, and particle distribution patterns, were investigated. Their influences on the properties of particle–polymer liquid suspensions and properties of the three-dimensional (3D) printed composites were characterized. By utilizing the magnetic anisotropy properties of the printed composites, motions of the printed parts could be actuated at different positions in the applied magnetic field. Physical models were established to predict magnetic properties of the composite and trigger distance of fabricated parts. The predicted results agreed well with the experimental measurements, indicating the effectiveness of predicting macroscopic composite performance using microscale distribution data, and the feasibility of using the developed physical models to guide multimaterial and multifunctional composite design.


Author(s):  
Indrajit Sen

The possibility of using retrocausality to obtain a fundamentally relativistic account of the Bell correlations has gained increasing recognition in recent years. It is not known, however, the extent to which these models can make use of their relativistic properties to account for relativistic effects on entangled systems. We consider here a hypothetical relativistic Bell experiment, where one of the wings experiences time-dilation effects. We show that the retrocausal Brans model ( Found. Phys. , 49 (2), 2019) can be easily generalized to analyse this experiment, and that it predicts less separation of eigenpackets in the wing experiencing the time-dilation. This causes the particle distribution patterns on the photographic plates to differ between the wings—an experimentally testable prediction of the model. We discuss the difficulties faced by other hidden variable models in describing this experiment, and their natural resolution in our model due to its relativistic properties. In particular, we discuss how a ψ -epistemic interpretation may resolve several difficulties encountered in relativistic generalizations of de Broglie–Bohm theory and objective state reduction models. Lastly, we argue that it is not clear at present, due to technical difficulties, if our prediction is reproduced by quantum field theory. We conclude that if it is, then the retrocausal Brans model predicts the same result with great simplicity in comparison. If not, the model can be experimentally tested.


Author(s):  
Lu Lu ◽  
Erina Baynojir Joyee ◽  
Yayue Pan

To date, various multi-material and multi-functional Additive Manufacturing technologies have been developed for the production of multi-functional smart structures. Those technologies are capable of controlling the local distributions of materials, hence achieving gradient or heterogeneous properties and functions. Such multi-material and multi-functional manufacturing capability opens up new applications in many fields. However, it is still largely unknown that how to design the localized material distribution to achieve the desired product properties and functionalities. To address this challenge, the correlation between the micro-scale material distribution and the macroscopic composite performance needs to be established. In our previous work, a novel Magnetic-field-assisted Stereolithography (M-PSL) process has been developed, for fabricating magnetic particle-polymer composites. Hence, in this work, we focus on the study of magnetic-field-responsive particle-polymer composite design, with the aim of developing some guidelines for predicting the magnetic-field-responsive properties of the composite fabricated by M-PSL process. Micro-scale particle distribution parameters, including particle loading fraction, particle magnetization, and distribution patterns, are investigated. Their influences on the properties of particle-polymer liquid suspensions, and the properties of the 3D printed composites, are characterized. By utilizing the magnetic anisotropy properties of the printed composites, different motions of the printed parts could be triggered at different relative positions under the applied magnetic field. Physical models are established, to predict the particle-polymer liquid suspension properties and the trigger conditions of fabricated parts. Experiments are performed to verify the physical models. The predicted results agree well with the experimental measurements, indicating the effectiveness of predicting the macroscopic composite performance using micro-scale distribution data, and the feasibility of using the physical models for guiding the multi-material and multi-functional composite design.


Sign in / Sign up

Export Citation Format

Share Document