scholarly journals The effect of time-dilation on Bell experiments in the retrocausal Brans model

Author(s):  
Indrajit Sen

The possibility of using retrocausality to obtain a fundamentally relativistic account of the Bell correlations has gained increasing recognition in recent years. It is not known, however, the extent to which these models can make use of their relativistic properties to account for relativistic effects on entangled systems. We consider here a hypothetical relativistic Bell experiment, where one of the wings experiences time-dilation effects. We show that the retrocausal Brans model ( Found. Phys. , 49 (2), 2019) can be easily generalized to analyse this experiment, and that it predicts less separation of eigenpackets in the wing experiencing the time-dilation. This causes the particle distribution patterns on the photographic plates to differ between the wings—an experimentally testable prediction of the model. We discuss the difficulties faced by other hidden variable models in describing this experiment, and their natural resolution in our model due to its relativistic properties. In particular, we discuss how a ψ -epistemic interpretation may resolve several difficulties encountered in relativistic generalizations of de Broglie–Bohm theory and objective state reduction models. Lastly, we argue that it is not clear at present, due to technical difficulties, if our prediction is reproduced by quantum field theory. We conclude that if it is, then the retrocausal Brans model predicts the same result with great simplicity in comparison. If not, the model can be experimentally tested.

Entropy ◽  
2021 ◽  
Vol 24 (1) ◽  
pp. 4
Author(s):  
Charis Anastopoulos ◽  
Ntina Savvidou

Proposed quantum experiments in deep space will be able to explore quantum information issues in regimes where relativistic effects are important. In this essay, we argue that a proper extension of quantum information theory into the relativistic domain requires the expression of all informational notions in terms of quantum field theoretic (QFT) concepts. This task requires a working and practicable theory of QFT measurements. We present the foundational problems in constructing such a theory, especially in relation to longstanding causality and locality issues in the foundations of QFT. Finally, we present the ongoing Quantum Temporal Probabilities program for constructing a measurement theory that (i) works, in principle, for any QFT, (ii) allows for a first- principles investigation of all relevant issues of causality and locality, and (iii) it can be directly applied to experiments of current interest.


Author(s):  
N. Zhang ◽  
Z. Charlie Zheng ◽  
L. Glasgow ◽  
B. Braley

A model simulating the deposition of small particles with turbulent transport, sedimentation, and coagulation, is presented. Experimental measurements were conducted in a room-scale chamber using a specially designed sequential sampler. The measured deposition-rate data are compared with the simulation results. Distributions of particle-number density at different times are plotted in several viewing planes to facilitate discussion of the particle distribution patterns.


1993 ◽  
Vol 71 (7-8) ◽  
pp. 365-379 ◽  
Author(s):  
Leo Di Leo ◽  
Jurij W. Darewych

We derive relativistic three-particle wave equations for scalar particles [Formula: see text], [Formula: see text], and [Formula: see text], interacting via a massive or massless scalar field, χ. The variational method, within the Hamiltonian formalism of quantum field theory, is used to obtain the equations using a simple [Formula: see text] Ansatz. Approximate solutions of these equations are presented for various strengths of the coupling. The magnitude of the relativistic effects in the three-particle energies and wave functions is illustrated by comparison with nonrelativistic results.


2017 ◽  
Vol 6 (1) ◽  
Author(s):  
Lu Lu ◽  
Erina Baynojir Joyee ◽  
Yayue Pan

To date, several additive manufacturing (AM) technologies have been developed for fabricating smart particle–polymer composites. Those techniques can control particle distributions to achieve gradient or heterogeneous properties and functions. Such manufacturing capability opened up new applications in many fields. However, it is still widely unknown how to design the localized material distribution to achieve desired product properties and functionalities. The correlation between microscale material distribution and macroscopic composite performance needs to be established. In our previous work, a novel magnetic field-assisted stereolithography (M-PSL) process was developed, for fabricating magnetic particle–polymer composites. In this work, we focused on the study of magnetic-field-responsive particle–polymer composite design with the aim of developing guidelines for predicting the magnetic-field-responsive properties of the composite. Microscale particle distribution parameters, including particle loading fraction, magnetic particle chain structure, microstructure orientation, and particle distribution patterns, were investigated. Their influences on the properties of particle–polymer liquid suspensions and properties of the three-dimensional (3D) printed composites were characterized. By utilizing the magnetic anisotropy properties of the printed composites, motions of the printed parts could be actuated at different positions in the applied magnetic field. Physical models were established to predict magnetic properties of the composite and trigger distance of fabricated parts. The predicted results agreed well with the experimental measurements, indicating the effectiveness of predicting macroscopic composite performance using microscale distribution data, and the feasibility of using the developed physical models to guide multimaterial and multifunctional composite design.


2019 ◽  
Vol 79 (10) ◽  
Author(s):  
Luca Fabbri ◽  
Flora Moulin ◽  
Aurélien Barrau

Abstract Spinor fields are written in polar form so as to compute their tensorial connection, an object that contains the same information of the connection but which is also proven to be a real tensor. From this, one can still compute the Riemann curvature, encoding the information about gravity. But even in absence of gravity, when the Riemann curvature vanishes, it may still be possible that the tensorial connection remains different from zero, and thih can have effects on matter. This is shown with examples in the two known integrable cases: the hydrogen atom and the harmonic oscillator. The fact that a spinor can feel effects due to sourceless actions is already known in electrodynamics as the Aharonov–Bohm phenomenon. A parallel between the electrodynamics case and the situation encountered here will be drawn. Some ideas about relativistic effects and their role for general treatments of quantum field theories are also underlined.


2020 ◽  
Author(s):  
Christopher Reiss

It is argued that an advanced extraterrestrial intelligence has an overwhelming incentive to permanently occupy a reference frame where time is greatly slowed by relativistic effects. We then give the case that a near orbit around an SMBH provides a viable - and perhaps only - possibility for such a migration. The expected character of radio emissions from such a civilization is discussed and a method is proposed for possible detection.


Sign in / Sign up

Export Citation Format

Share Document