COMBINED TARGETING OF ANDROGEN RECEPTOR AND PROTEIN KINASE A SIGNALING PATHWAYS INCREASES INHIBITION OF PROSTATE TUMOUR GROWTH

2009 ◽  
Vol 181 (4S) ◽  
pp. 509-509
Author(s):  
Andreas Desiniotis ◽  
Georg Schaefer ◽  
Georg Bartsch ◽  
Helmut Klocker ◽  
Iris E Eder
Endocrinology ◽  
2004 ◽  
Vol 145 (11) ◽  
pp. 4940-4947 ◽  
Author(s):  
Katrin Fricke ◽  
Aleksandra Heitland ◽  
Erik Maronde

Abstract In the present study, we investigate the coherence of signaling pathways leading to lipolysis in 3T3-L1 adipocytes. We observe two linear signaling pathways: one well known, acting via cAMP and protein kinase A (PKA) activation, and a second one induced by phorbol 12-myristate 13-acetate treatment involving protein kinase C (PKC) and MAPK. We demonstrate that both the PKA regulatory subunits RIα and RIIβ are expressed in 3T3-L1 adipocytes and are responsible for the lipolytic effect mediated via the cAMP/PKA pathway. Inhibition of the PKA pathway by the selective PKA inhibitor Rp-8-CPT-cAMPS does not impair lipolysis induced by PKC activation, and neither PD98059 nor U0126, as known MAPK kinase inhibitors, changes the level of glycerol release caused by PKA activation, indicating no cross-talk between these two pathways when only one is activated. However, when both are activated, they act synergistically on glycerol release. Additional experiments focusing on this synergy show no involvement of MAPK phosphorylation and cAMP formation. Phosphorylation of hormone-sensitive lipase is similar upon stimulation of either pathway, but we demonstrate a difference in the ability of both PKA and the PKC pathway activation to phosphorylate perilipin, which in turn may be an explanation for the different maximal lipolytic effect of both pathways.


2020 ◽  
Vol 102 (6) ◽  
pp. 1290-1305 ◽  
Author(s):  
Patrycja Kurowska ◽  
Ewa Mlyczyńska ◽  
Monika Dawid ◽  
Joelle Dupont ◽  
Agnieszka Rak

Abstract Vaspin, visceral-adipose-tissue-derived serine protease inhibitor, is involved in the development of obesity, insulin resistance, inflammation, and energy metabolism. Our previous study showed vaspin expression and its regulation in the ovary; however, the role of this adipokine in ovarian cells has never been studied. Here, we studied the in vitro effect of vaspin on various kinase-signaling pathways: mitogen-activated kinase (MAP3/1), serine/threonine kinase (AKT), signal transducer and activator of transcription 3 (STAT3) protein kinase AMP (PRKAA1), protein kinase A (PKA), and on expression of nuclear factor kappa B (NFKB2) as well as on steroid synthesis by porcine ovarian cells. By using western blot, we found that vaspin (1 ng/ml), in a time-dependent manner, increased phosphorylation of MAP3/1, AKT, STAT3, PRKAA1, and PKA, while it decreased the expression of NFKB2. We observed that vaspin, in a dose-dependent manner, increased the basal steroid hormone secretion (progesterone and estradiol), mRNA and protein expression of steroid enzymes using real-time PCR and western blot, respectively, and the mRNA of gonadotropins (FSHR, LHCGR) and steroids (PGR, ESR2) receptors. The stimulatory effect of vaspin on basal steroidogenesis was reversed when ovarian cells were cultured in the presence of a PKA pharmacological inhibitor (KT5720) and when GRP78 receptor was knocked down (siRNA). However, in the presence of insulin-like growth factor type 1 and gonadotropins, vaspin reduced steroidogenesis. Thus, vaspin, by activation of various signaling pathways and stimulation of basal steroid production via GRP78 receptor and PKA, could be a new regulator of porcine ovarian function.


1999 ◽  
pp. 51
Author(s):  
Zoran Culig ◽  
Alfred Hobisch ◽  
Georg Bartsch ◽  
Helmut Klocker ◽  
Heike Peterziel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document