Immunohistochemical Demonstration of Blood Group Antigens in Neoplastic and Normal Human Urothelium: A Comparison with Standard Red Cell Adherence

1983 ◽  
Vol 130 (3) ◽  
pp. 499-503 ◽  
Author(s):  
Robert C. Flanigan ◽  
Charles T. King ◽  
T.D. Clark ◽  
James B. Cash ◽  
B. Jane Greenfield ◽  
...  
2006 ◽  
Vol 16 (s1) ◽  
pp. 5-5
Author(s):  
M. de Haas ◽  
C. E. van der Schoot ◽  
P. A. Maaskant-van Wijk

Transfusion ◽  
1992 ◽  
Vol 32 (9) ◽  
pp. 848-849 ◽  
Author(s):  
RT Oreskovic ◽  
UJ Dumaswala ◽  
TJ Greenwalt

2021 ◽  
pp. 1-8
Author(s):  
Oytip Nathalang ◽  
Kamphon Intharanut ◽  
Sarisa Chidtrakoon

<b><i>Background:</i></b> High-resolution melting (HRM) analysis is an alternative method for red cell genotyping. Differences in melting curves between homozygous and heterozygous genotypes can predict phenotypes in blood group systems based on single-nucleotide polymorphisms. This study aimed to implement HRM analysis to predict additional extended blood group phenotypes in Thai donor and patient populations. <b><i>Methods:</i></b> Blood samples obtained from 300 unrelated Thai blood donors and 23 patients with chronic transfusions were included. HRM analysis was developed and validated in genotyping of <i>KEL</i>*<i>01</i> and <i>KEL</i>*<i>02</i>, <i>JK</i>*<i>01</i> and <i>JK</i>*<i>02</i>, <i>FY</i>*<i>01</i>, <i>FY</i>*<i>02</i>, and <i>FY</i>*<i>02 N.01</i>, <i>DI</i>*<i>01</i> and <i>DI</i>*<i>02</i>, <i>GYPB</i>*<i>03</i> and <i>GYPB</i>*<i>04</i>, <i>RHCE</i>*<i>E</i> and <i>RHCE</i>*<i>e,</i> and <i>DO</i>*<i>01</i> and <i>DO</i>*<i>02.</i> Then genotyping results from HRM and polymerase chain reaction with sequence-specific primer (PCR-SSP) and phenotyping results were compared. <b><i>Results:</i></b> The validated genotyping results in known DNA controls by HRM analysis agreed with DNA sequencing. The genotyping results among 300 donors in 15 alleles by HRM analysis were in complete concordance with those obtained by serological testing and PCR-SSP. The sensitivity and specificity of the HRM assay were both 100%. Among patients, 13 had alloantibodies that possessed predicted antigen-negative phenotypes corresponding to those antibody specificities, and the highest probability of genotyped-matched donors was given to the remaining patients. <b><i>Conclusions:</i></b> We developed and implemented the HRM analysis assay for red cell genotyping to predict extended blood group antigens in Thai donor and patient populations. The data from this study may help inform about and support transfusion care of Thai patients to reduce the risk of alloimmunisation.


Blood ◽  
1999 ◽  
Vol 93 (12) ◽  
pp. 4418-4424 ◽  
Author(s):  
Sergio H. Spalter ◽  
Srini V. Kaveri ◽  
Emmanuelle Bonnin ◽  
Jean-Claude Mani ◽  
Jean-Pierre Cartron ◽  
...  

Abstract It is widely accepted that the serum of healthy individuals contains natural antibodies only against those blood group A or B antigens that are not expressed on the individual’s red blood cells. The mechanisms involved in tolerance to autologous blood group antigens remain unclear. In the present study, we show that IgM and IgG antibodies reactive with autologous blood group antigens are present in the immunoglobulin fraction of normal human serum. Natural IgG anti-A antibodies purified by affinity chromatography from IgG of individuals of blood group A exhibited an affinity for A trisaccharide antigen in the micromolar range and agglutinated A red cells at sixfold higher concentrations than those required for agglutination with affinity-purified anti-A IgG of individuals of blood group B. Whereas autoantibodies reactive with self A and B antigens are readily detected in purified IgG and IgM fractions, their expression is restricted in whole serum as a result of complementary interactions between variable regions of antibodies. These observations suggest that tolerance to autologous ABO blood group antigens is dependent on peripheral control of antibody autoreactivity.


Blood ◽  
2009 ◽  
Vol 114 (2) ◽  
pp. 248-256 ◽  
Author(s):  
David J. Anstee

Abstract Over the past 20 years the molecular bases of almost all the major blood group antigens have been determined. This research has enabled development of DNA-based methods for determining blood group genotype. The most notable application of these DNA-based methods has been for determining fetal blood group in pregnancies when the fetus is at risk for hemolytic disease of the fetus and newborn. The replacement of all conventional serologic methods for pretransfusion testing by molecular methods is not straightforward. For the majority of transfusion recipients matching beyond ABO and D type is unnecessary, and the minority of untransfused patients at risk of alloimmunization who would benefit from more extensively blood group–matched blood cannot be identified reliably. Even if a method to identify persons most likely to make alloantibodies were available, this would not of itself guarantee the provision of extensively phenotype-matched blood for these patients because this is determined by the size and racial composition of blood donations available for transfusion. However, routine use of DNA-based extended phenotyping to provide optimally matched donations for patients with preexisting antibodies or patients with a known predisposition to alloimmunization, such as those with sickle cell disease, is widely used.


Blood ◽  
1999 ◽  
Vol 93 (12) ◽  
pp. 4418-4424 ◽  
Author(s):  
Sergio H. Spalter ◽  
Srini V. Kaveri ◽  
Emmanuelle Bonnin ◽  
Jean-Claude Mani ◽  
Jean-Pierre Cartron ◽  
...  

It is widely accepted that the serum of healthy individuals contains natural antibodies only against those blood group A or B antigens that are not expressed on the individual’s red blood cells. The mechanisms involved in tolerance to autologous blood group antigens remain unclear. In the present study, we show that IgM and IgG antibodies reactive with autologous blood group antigens are present in the immunoglobulin fraction of normal human serum. Natural IgG anti-A antibodies purified by affinity chromatography from IgG of individuals of blood group A exhibited an affinity for A trisaccharide antigen in the micromolar range and agglutinated A red cells at sixfold higher concentrations than those required for agglutination with affinity-purified anti-A IgG of individuals of blood group B. Whereas autoantibodies reactive with self A and B antigens are readily detected in purified IgG and IgM fractions, their expression is restricted in whole serum as a result of complementary interactions between variable regions of antibodies. These observations suggest that tolerance to autologous ABO blood group antigens is dependent on peripheral control of antibody autoreactivity.


Sign in / Sign up

Export Citation Format

Share Document