Nitric oxide regulates body temperature, neuronal activation and interleukin-1β gene expression in the hypothalamic paraventricular nucleus in response to immune stress

2000 ◽  
Vol 39 (11) ◽  
pp. 2075-2089 ◽  
Author(s):  
Wendy W Yang ◽  
Teresa L Krukoff
Endocrinology ◽  
2008 ◽  
Vol 149 (9) ◽  
pp. 4329-4335 ◽  
Author(s):  
Edith Sánchez ◽  
Praful S. Singru ◽  
Runa Acharya ◽  
Monica Bodria ◽  
Csaba Fekete ◽  
...  

To explore the effect of refeeding on recovery of TRH gene expression in the hypothalamic paraventricular nucleus (PVN) and its correlation with the feeding-related neuropeptides in the arcuate nucleus (ARC), c-fos immunoreactivity (IR) in the PVN and ARC 2 h after refeeding and hypothalamic TRH, neuropeptide Y (NPY) and agouti-related protein (AGRP) mRNA levels 4, 12, and 24 h after refeeding were studied in Sprague-Dawley rats subjected to prolonged fasting. Despite rapid reactivation of proopiomelanocortin neurons by refeeding as demonstrated by c-fos IR in ARC α-MSH-IR neurons and ventral parvocellular subdivision PVN neurons, c-fos IR was present in only 9.7 ± 1.1% hypophysiotropic TRH neurons. Serum TSH levels remained suppressed 4 and 12 h after the start of refeeding, returning to fed levels after 24 h. Fasting reduced TRH mRNA compared with fed animals, and similar to TSH, remained suppressed at 4 and 12 h after refeeding, returning toward normal at 24 h. AGRP and NPY gene expression in the ARC were markedly elevated in fasting rats, AGRP mRNA returning to baseline levels 12 h after refeeding and NPY mRNA remaining persistently elevated even at 24 h. These data raise the possibility that refeeding-induced activation of melanocortin signaling exerts differential actions on its target neurons in the PVN, an early action directed at neurons that may be involved in satiety, and a later action on hypophysiotropic TRH neurons involved in energy expenditure, potentially mediated by sustained elevations in AGRP and NPY. This response may be an important homeostatic mechanism to allow replenishment of depleted energy stores associated with fasting.


2018 ◽  
Vol 18 ◽  
pp. 120-133 ◽  
Author(s):  
Zoltán Péterfi ◽  
Imre Farkas ◽  
Raphael G.P. Denis ◽  
Erzsébet Farkas ◽  
Motokazu Uchigashima ◽  
...  

Endocrinology ◽  
2005 ◽  
Vol 146 (3) ◽  
pp. 1357-1363 ◽  
Author(s):  
Csaba Fekete ◽  
Praful S. Singru ◽  
Sumit Sarkar ◽  
William M. Rand ◽  
Ronald M. Lechan

The nonthyroidal illness syndrome associated with fasting, infection, and chronic illness is characterized by low thyroid hormone levels and low or inappropriately normal TSH levels in circulating blood and reduced synthesis of TRH in hypophysiotropic neurons residing in the hypothalamic paraventricular nucleus (PVN). To test the hypothesis that ascending brainstem pathways are involved in mediation of bacterial lipopolysaccharide (LPS)-induced suppression of TRH mRNA in the PVN, we unilaterally transected brainstem pathways to the PVN and determined the effects of LPS on TRH gene expression and, as a control, on CRH gene expression in hypophysiotropic neurons using semiquantitative in situ hybridization histochemistry. The efficacy of the transection was determined by immunocytochemical detection of ascending adrenergic pathways in the PVN. In vehicle-treated animals, CRH mRNA in the PVN showed a significant reduction on the transected side compared with the intact side, whereas a significant increase in TRH mRNA was observed on the transected side compared with the intact side. After LPS administration (250 μg/100 g body weight), a dramatic increase in CRH mRNA was observed on the intact side, and a significantly lesser increase was found on the transected side. In contrast, LPS treatment resulted in reduction in TRH mRNA on the transected side compared with the intact side and a significant reduction in TRH mRNA on the transected side compared with vehicle-treated animals. These studies confirm an important role of ascending brainstem projections in LPS-induced activation of CRH gene expression, but indicate that they do not mediate the effect of LPS to inhibit hypophysiotropic TRH gene expression.


1997 ◽  
Vol 28 ◽  
pp. S115
Author(s):  
Yuta Ishizuka ◽  
Qing-Hua Jin ◽  
Ayumi Shimokawa ◽  
Takato Kunitake ◽  
Hiroshi Kannan

Sign in / Sign up

Export Citation Format

Share Document