Differential interactions of lamotrigine and related drugs with transmembrane segment IVS6 of voltage-gated sodium channels

2003 ◽  
Vol 44 (3) ◽  
pp. 413-422 ◽  
Author(s):  
G. Liu ◽  
V. Yarov-Yarovoy ◽  
M. Nobbs ◽  
J.J. Clare ◽  
T. Scheuer ◽  
...  
2019 ◽  
Vol 2019 (4) ◽  
Author(s):  
William A. Catterall ◽  
Alan L. Goldin ◽  
Stephen G. Waxman

Sodium channels are voltage-gated sodium-selective ion channels present in the membrane of most excitable cells. Sodium channels comprise of one pore-forming α subunit, which may be associated with either one or two β subunits [176]. α-Subunits consist of four homologous domains (I–IV), each containing six transmembrane segments (S1–S6) and a pore-forming loop. The positively charged fourth transmembrane segment (S4) acts as a voltage sensor and is involved in channel gating. The crystal structure of the bacterial NavAb channel has revealed a number of novel structural features compared to earlier potassium channel structures including a short selectivity filter with ion selectivity determined by interactions with glutamate side chains [268]. Interestingly, the pore region is penetrated by fatty acyl chains that extend into the central cavity which may allow the entry of small, hydrophobic pore-blocking drugs [268]. Auxiliary β1, β2, β3 and β4 subunits consist of a large extracellular N-terminal domain, a single transmembrane segment and a shorter cytoplasmic domain.The nomenclature for sodium channels was proposed by Goldin et al., (2000) [143] and approved by the NC-IUPHAR Subcommittee on sodium channels (Catterall et al., 2005, [51]).


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
William A. Catterall ◽  
Alan L. Goldin ◽  
Stephen G. Waxman

Sodium channels are voltage-gated sodium-selective ion channels present in the membrane of most excitable cells. Sodium channels comprise of one pore-forming α subunit, which may be associated with either one or two β subunits [177]. α-Subunits consist of four homologous domains (I-IV), each containing six transmembrane segments (S1-S6) and a pore-forming loop. The positively charged fourth transmembrane segment (S4) acts as a voltage sensor and is involved in channel gating. The crystal structure of the bacterial NavAb channel has revealed a number of novel structural features compared to earlier potassium channel structures including a short selectivity filter with ion selectivity determined by interactions with glutamate side chains [274]. Interestingly, the pore region is penetrated by fatty acyl chains that extend into the central cavity which may allow the entry of small, hydrophobic pore-blocking drugs [274]. Auxiliary β1, β2, β3 and β4 subunits consist of a large extracellular N-terminal domain, a single transmembrane segment and a shorter cytoplasmic domain.The nomenclature for sodium channels was proposed by Goldin et al., (2000) [144] and approved by the NC-IUPHAR Subcommittee on sodium channels (Catterall et al., 2005, [52]).


Author(s):  
Zhi-mei Li ◽  
Li-xia Chen ◽  
Hua Li

The article “Voltage-gated Sodium Channels and Blockers: An Overview and Where Will They Go?”, written by Zhi-mei LI, Li-xia CHEN, Hua LI, was originally published electronically on the publisher’s internet portal on December 2019 without open access. With the author(s)’ decision to opt for Open Choice, the copyright of the article is changed to © The Author(s) 2020 and the article is forthwith distributed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.The original article has been corrected.Corresponding authors: Li-xia CHEN, Hua LI


Sign in / Sign up

Export Citation Format

Share Document