Nucleotide sugars and starch synthesis in spadix of Arum maculatum and suspension cultures of Glycine max

1984 ◽  
Vol 23 (11) ◽  
pp. 2463-2468 ◽  
Author(s):  
T. ap Rees ◽  
M. Leja ◽  
F.D. Macdonald ◽  
J.H. Green
1972 ◽  
Vol 27 (8) ◽  
pp. 946-954 ◽  
Author(s):  
Wolfgang Hösel ◽  
Paul D. Shaw ◽  
Wolfgang Barz

The flavonols kaempferol, quercetin and isorhamnetin were labelled with 14C by keeping seven day old Cicer arietinum L. plants in an atmosphere of 14CO2 for five days. The purified (U-14C) flavonols were applied to cell suspension cultures of Cicer arietinum L., Phaseolus aureus Roxb., Glycine max and Petroselinum hortense. Based on the rates of 14CO2 formation and distribution of radioactivity after fractionation of the cells, the flavonols were shown to be catabolized to a very high extent.All four cell suspension cultures possess the enzymatic activity transforming flavonols to the recently discovered 2,3-dihydroxyflavanones. Upon incubation of the flavonols datiscetin and kaempferol with enzyme preparations from Cicer arietinum L. cell suspension cultures, it was demonstrated that the enzymatically formed 2,3-dihydroxyflavanones are further transformed in an enzyme catalyzed reaction. Salicylic acid was found as a degradation fragment of ring B of the 2,3,5,7,2′-pentahydroxyflavanone derived from datiscetin. Neither phloroglucinol nor phloroglucinol carboxylic acid were observed as metabolites of ring A. These in vitro findings were further substantiated by in vivo data because the flavonols kaempferol, quercetin and datiscetin when applied to cell suspension cultures of Cicer arietinum L. and Glycine max gave rise to para-hydroxybenzoic acid, protocatechuic acid and salicylic acid, respectively. It was thus concluded that flavonols are catabolized via 2,3-dihydroxyflavanones with the B-ring liberated as the respective benzoic acid. The data are discussed in connection with earlier findings on the catabolism of chalcones, cinnamic and benzoic acids.


1985 ◽  
Vol 227 (1) ◽  
pp. 299-304 ◽  
Author(s):  
T ap Rees ◽  
J H Green ◽  
P M Wilson

The activity of pyrophosphate:fructose-6-phosphate 1-phosphotransferase [PFK (PPi); EC 2.7.1.90] in extracts of the storage tissues of leek (Allium porrum), beetroot (Beta vulgaris) and roots of darnel (Lolium temulentum) exceeded 0.15 mumol/min per g fresh wt. As net flux from fructose 1,6-bisphosphate to fructose 6-phosphate in these tissues is unlikely, it is suggested that PFK (PPi) does not contribute to gluconeogenesis or starch synthesis. The maximum catalytic activities of PFK (PPi) in apex, stele and cortex of the root of pea (Pisum sativum) and in the developing and the thermogenic club of the spadix of cuckoo-pint (Arum maculatum) were measured and compared with those of phosphofructokinase, and to estimates of the rates of carbohydrate oxidation. PPi and fructose 2,6-bisphosphate in Arum clubs were measured. The above measurements are consistent with a glycolytic role for PFK (PPi) in tissues where there is marked biosynthesis, but not in the thermogenic club of Arum. The possibility that PFK (PPi) is a means of synthesizing pyrophosphate is discussed.


Sign in / Sign up

Export Citation Format

Share Document