Influence of Land Surface Parameters and Atmosphere on METEOSAT Brightness Temperatures and Generation of Land Surface Temperature Maps by Temporally and Spatially Interpolating Atmospheric Correction

2001 ◽  
Vol 75 (1) ◽  
pp. 39-46 ◽  
Author(s):  
S Schädlich
2020 ◽  
Vol 165 ◽  
pp. 03006
Author(s):  
Zhou Yang ◽  
Liu Na-na

Land surface temperature is the surface of the earth’s energy change and the exchange process, which is an important index for a lot of scientific research. In this paper, the surface temperature changes of BeiBei district in Chongqing in the past 20 years were inverted in 6 time phases. The surface temperature inversion method of Landsat remote sensing data was studied, and the atmospheric correction method was adopted to conduct the inversion by using Landsat5TM and landsat8OLI-TIRS image data. The results showed that from 2004 to 2014, the area of high temperature area increased year by year, and the area of low temperature area also increased year by year.


2017 ◽  
Vol 2017 ◽  
pp. 1-10
Author(s):  
Yu-Ze Zhang ◽  
Xiao-Guang Jiang ◽  
Hua Wu ◽  
Ya-Zhen Jiang ◽  
Zhao-Xia Liu ◽  
...  

The Cross-track Infrared Sounder (CrIS) is one of the most advanced hyperspectral instruments and has been used for various atmospheric applications such as atmospheric retrievals and weather forecast modeling. However, because of the specific design purpose of CrIS, little attention has been paid to retrieving land surface parameters from CrIS data. To take full advantage of the rich spectral information in CrIS data to improve the land surface retrievals, particularly the acquisition of a continuous Land Surface Emissivity (LSE) spectrum, this paper attempts to simultaneously retrieve a continuous LSE spectrum and the Land Surface Temperature (LST) from CrIS data with the atmospheric reanalysis data and the Iterative Spectrally Smooth Temperature and Emissivity Separation (ISSTES) algorithm. The results show that the accuracy of the retrieved LSEs and LST is comparable with the current land products. The overall differences of the LST and LSE retrievals are approximately 1.3 K and 1.48%, respectively. However, the LSEs in our study can be provided as a continuum spectrum instead of the single-channel values in traditional products. The retrieved LST and LSEs now can be better used to further analyze the surface properties or improve the retrieval of atmospheric parameters.


Sign in / Sign up

Export Citation Format

Share Document