The Jura Mountains — an active foreland fold-and-thrust belt?

2000 ◽  
Vol 321 (4) ◽  
pp. 381-406 ◽  
Author(s):  
Arnfried Becker
2015 ◽  
Vol 3 (4) ◽  
pp. SAA37-SAA58 ◽  
Author(s):  
Alexander Malz ◽  
Herfried Madritsch ◽  
Jonas Kley

The structural geologic interpretation of reflection seismic data is affected by conceptual uncertainty, particularly in challenging onshore settings. This uncertainty can be significantly reduced by the integration of cross-section restoration and balancing techniques into the seismic interpretation workflow. Moreover, these techniques define a solid and comprehensive basis, grounding the interpretation and allowing a closer investigation of the deformation history that led to the interpreted structures. These benefits are demonstrated on the basis of a case study from the eastern Jura Mountains in northern Switzerland. This mountain range was formed by a thin-skinned foreland fold-and-thrust belt with a multiphase prethrusting tectonic history. Despite significant seismic acquisition and processing efforts, seismic imaging of the strongly deformed parts of the belt widely remains ambiguous. We have developed a detailed systematic interpretation workflow that is exemplified here for a single seismic profile across the Jura Main Thrust. Classical cross-section balancing techniques of equal bed lengths and areas were applied to validate and reinterpret the given seismic interpretation. Our results suggest that most of the observed structures resulted from thin-skinned deformation along a basal décollement in Lower Triassic evaporites, which is generally inferred for the Jura Mountains. Nevertheless, secondary detachment levels in above lying strata have to be considered as well. The stepwise restoration of the analyzed cross section points toward different styles of thin-skinned deformation and possibly several episodes of earlier basement-rooted faulting events, which are indicated by subtle stratigraphic thickness changes. In summary, our workflow allowed us to significantly improve the original seismic interpretation, highlight specific deformation styles, and illuminate possible prethrusting deformation events that would otherwise be easily overlooked.


Geosciences ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 10
Author(s):  
Diego Villagómez Díaz ◽  
Silvia Omodeo-Salé ◽  
Alexey Ulyanov ◽  
Andrea Moscariello

This work presents new apatite fission track LA–ICP–MS (Laser Ablation Inductively Coupled Plasma Mass Spectrometry) data from Mid–Late Paleozoic rocks, which form the substratum of the Swiss Jura mountains (the Tabular Jura and the Jura fold-and-thrust belt) and the northern margin of the Swiss Molasse Basin. Samples were collected from cores of deep boreholes drilled in North Switzerland in the 1980s, which reached the crystalline basement. Our thermochronological data show that the region experienced a multi-cycle history of heating and cooling that we ascribe to burial and exhumation, respectively. Sedimentation in the Swiss Jura Mountains occurred continuously from Early Triassic to Early Cretaceous, leading to the deposition of maximum 2 km of sediments. Subsequently, less than 1 km of Lower Cretaceous and Upper Jurassic sediments were slowly eroded during the Late Cretaceous, plausibly as a consequence of the northward migration of the forebulge of the neo-forming North Alpine Foreland Basin. Following this event, the whole region remained relatively stable throughout the Paleogene. Our data show that the Tabular Jura region resumed exhumation at low rates in early–middle Miocene times (≈20–15 Ma), whereas exhumation in the Jura fold-and-thrust belt probably re-started later, in the late Miocene (≈10–5 Ma). Erosional exhumation likely continues to the present day. Despite sampling limitations, our thermochronological data record discrete periods of slow cooling (rates of about 1°C/My), which might preclude models of elevated cooling (due to intense erosion) in the Jura Mountains during the Miocene. The denudation (≈1 km) of the Tabular Jura region and the Jura fold-and-thrust belt (≈500 m) has provided sediments to the Swiss Molasse Basin since at least 20 Ma. The southward migration of deformation in the Jura mountains suggests that the molasse basin started to uplift and exhume only after 5 Ma, as suggested also by previous authors. The data presented here show that the deformation of the whole region is occurring in an out-of-sequence trend, which is more likely associated with the reactivation of thrust faults beneath the foreland basin. This deformation trend suggests that tectonics is the most determinant factor controlling denudation and exhumation of the region, whereas the recently proposed “climate-induced exhumation” mechanism might play a secondary role.


2020 ◽  
Author(s):  
Marc Schori ◽  
Anna Sommaruga ◽  
Jon Mosar

<p>The Jura Mountains are a thin-skinned fold-and-thrust belt (FTB) in the northern foreland of the European Alps, extending over northern and western Switzerland and eastern France. The Jura FTB was detached in Triassic evaporites during Late Miocene and Pliocene compression. Prior to this, the pre-Mesozoic basement was intensely pre-structured by inherited faults that had been reactivated under changing stress fields during the Mesozoic and Cenozoic structural evolution of continental Europe. In order to understand the connection between thin-skinned FTB formation and pre-existing basement structures, we compiled boreholes and geological cross-sections across the Northern Alpine Foreland and derived elevation, thickness and erosion models of defined Mesozoic units and the top of the pre-Mesozoic basement.</p><p>Our models confirm the presence of basement faults concealed underneath the detached cover of the Jura Mountains. The pre-Mesozoic basement shows differences in structural altitudes resulting from partially overlapping lithospheric processes. They include graben formation during evolution of the European Cenozoic Rift System (ECRIS), flexural subsidence during Alpine forebulge development and lithospheric long-wavelength buckle folding. Faults in connection with these processes follow structural trends that suggest the reactivation of inherited Variscan and post-Variscan fault systems. We discuss the spatio-temporal imprint of lithospheric signatures on the pre-Mesozoic basement and their consequence on the formation of the Jura Mountains FTB. Untangling structures within the pre-Mesozoic basement leads us to a modern understanding of the long-term evolution of the detached Mesozoic cover. Furthermore, it allows us to improve the prediction of ages that are potentially preserved within the Mesozoic cover of the Jura FTB.</p>


Author(s):  
Elizabeth A. Barnett ◽  
Brian L. Sherrod ◽  
Robert Norris ◽  
Douglas Gibbons

2016 ◽  
Author(s):  
Daniel Benjamin Lammie ◽  
◽  
Peter B. Sak ◽  
Nadine McQuarrie

2018 ◽  
Author(s):  
Andrew P. Lamb ◽  
◽  
Richard J. Blakely ◽  
Ray E. Wells ◽  
Brian L. Sherrod ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document