The pre-Mesozoic basement underneath the Jura Mountains fold-and-thrust belt: an overview from models and maps

Author(s):  
Marc Schori ◽  
Anna Sommaruga ◽  
Jon Mosar

<p>The Jura Mountains are a thin-skinned fold-and-thrust belt (FTB) in the northern foreland of the European Alps, extending over northern and western Switzerland and eastern France. The Jura FTB was detached in Triassic evaporites during Late Miocene and Pliocene compression. Prior to this, the pre-Mesozoic basement was intensely pre-structured by inherited faults that had been reactivated under changing stress fields during the Mesozoic and Cenozoic structural evolution of continental Europe. In order to understand the connection between thin-skinned FTB formation and pre-existing basement structures, we compiled boreholes and geological cross-sections across the Northern Alpine Foreland and derived elevation, thickness and erosion models of defined Mesozoic units and the top of the pre-Mesozoic basement.</p><p>Our models confirm the presence of basement faults concealed underneath the detached cover of the Jura Mountains. The pre-Mesozoic basement shows differences in structural altitudes resulting from partially overlapping lithospheric processes. They include graben formation during evolution of the European Cenozoic Rift System (ECRIS), flexural subsidence during Alpine forebulge development and lithospheric long-wavelength buckle folding. Faults in connection with these processes follow structural trends that suggest the reactivation of inherited Variscan and post-Variscan fault systems. We discuss the spatio-temporal imprint of lithospheric signatures on the pre-Mesozoic basement and their consequence on the formation of the Jura Mountains FTB. Untangling structures within the pre-Mesozoic basement leads us to a modern understanding of the long-term evolution of the detached Mesozoic cover. Furthermore, it allows us to improve the prediction of ages that are potentially preserved within the Mesozoic cover of the Jura FTB.</p>

2021 ◽  
Vol 145 ◽  
pp. 104310
Author(s):  
Humaad Ghani ◽  
Edward R. Sobel ◽  
Gerold Zeilinger ◽  
Johannes Glodny ◽  
Irum Irum ◽  
...  

2016 ◽  
Vol 153 (5-6) ◽  
pp. 1066-1084 ◽  
Author(s):  
FACUNDO FUENTES ◽  
BRIAN K. HORTON ◽  
DANIEL STARCK ◽  
ANDRÉS BOLL

AbstractAndean Cenozoic shortening within the Malargüe fold–thrust belt of west-central Argentina has been dominated by basement faults largely influenced by pre-existing Mesozoic rift structures of the Neuquén basin system. The basement contractional structures, however, diverge from many classic inversion geometries in that they formed large hanging-wall anticlines with steeply dipping frontal forelimbs and structural relief in the order of several kilometres. During Cenozoic E–W shortening, the reactivated basement faults propagated into cover strata, feeding slip to shallow thrust systems that were later carried in piggyback fashion above newly formed basement structures, yielding complex thick- and thin-skinned structural relationships. In the adjacent foreland, Cenozoic clastic strata recorded the broad kinematic evolution of the fold–thrust belt. We present a set of structural cross-sections supported by regional surface maps and industry seismic and well data, along with new stratigraphic information for associated Neogene synorogenic foreland basin fill. Collectively, these results provide important constraints on the temporal and geometric linkages between the deeper basement faults (including both reactivated and newly formed structures) and shallow thin-skinned thrust systems, which, in turn, offer insights for the understanding of hydrocarbon systems in the actively explored Neuquén region of the Andean orogenic belt.


2020 ◽  
Author(s):  
Alexander Razmadze

<p>Gare Kakheti foothills are located between Lesser Caucasus and Kakheti Ridge and are mainly represented by the series of NEN dipping thrust faults, most of which are associated with fault‐related folds. Gare Kakheti foothills as a part of the Kura foreland fold-and-thrust belt developed formerly as a foreland basin (Oligocene-Lower Miocene) (e.g. Alania et al., 2017). Neogene shallow marine and continental sediments in the Gare Kakheti foothills keep the record on the stratigraphy and structural evolution of the study area during the compressive deformation. Interpreted seismic profiles and structural cross-sections across the Udabno, Tsitsmatiani, and Berebisseri synclines show that they are thrust-top basins. Seismic reflection data reveal the presence of growth fault-propagation folds and some structural wedges (or duplex). The evolution of the Udabno, Tsitsmatiani, and Berebisseri basins is compared with simple models of thrust-top basins whose development is controlled by the kinematics of competing for growth anticlines. Growth anticlines are mainly represented by fault-propagation folds. The geometry of growth strata in associated footwall synclines and the sedimentary infill of thrust-top basins provide information on the thrusting activity in terms of location, geometry, and age.<br>This work was supported by Shota Rustaveli National Science Foundation (SRNSF - #PHDF-19-268).</p><p> </p>


2020 ◽  
pp. SP504-2020-70
Author(s):  
Rod Graham ◽  
James Pindell ◽  
Diego Villagómez ◽  
Roberto Molina-Garza ◽  
James Granath ◽  
...  

AbstractThe structural evolution of southern Mexico is described in the context of its plate tectonic evolution and illustrated by two restored crustal scale cross-sections through Cuicateco and the Veracruz Basin and a third across Chiapas. We interpret the Late Jurassic–Early Cretaceous opening of an oblique hyper-stretched intra-arc basin between the Cuicateco Belt and Oaxaca Block of southern Mexico where Lower Cretaceous deep-water sediments accumulated. These rocks, together with the hyper-stretched basement beneath them and the Oaxaca Block originally west of them, were thrust onto the Cretaceous platform of the Cuicateco region during a Late Cretaceous–Eocene orogenic event. The mylonitic complex of the Sierra de Juárez represents this hyper-stretched basement, perhaps itself an extensional allochthon. The Chiapas fold-and-thrust belt is mainly Neogene in age. Shallowing of the subduction angle of the Cocos Plate in the wake of the Chortis Block, suggested by seismicity and migrating arc volcanism, is thought to play an important role in the development of the Chiapas fold-and-thrust belt itself, helping to explain the structural dilemma of a vertical transcurrent plate boundary fault (the Tonalá Fault) at the back of an essentially dip-slip fold-and-thrust belt.


2018 ◽  
Vol 45 (2) ◽  
pp. 249 ◽  
Author(s):  
Fernando Lebinson ◽  
Martín Turienzo ◽  
Natalia Sánchez ◽  
Vanesa Araujo ◽  
María Celeste D’Annunzio ◽  
...  

The Agrio fold and thrust belt is a thick-skinned orogenic belt developed since Late Cretaceous in response to the convergence between the Nazca and South American plates. The integration of new structural field data and seismic line interpretation allowed us to create two balanced cross-sections, which help to analyse the geometry of both thick and thin-skinned structures, to calculate the tectonic shortenings and finally to discuss the main mechanisms that produced this fold and thrust belt. The predominantly NNW-SSE structures show varying wavelengths, and can be classified into kilometer-scale first order basement involved structures and smaller second, third and fourth order fault-related folds in cover rocks with shallower detachments. Thick-skinned structures comprise fault-bend folds moving into the sedimentary cover, mainly along Late Jurassic evaporites, which form basement wedges that transfer the deformation to the foreland. Thus, shortenings in both basement and cover rocks must be similar and consequently, by measuring the contraction accounted for thin-skinned structures, is possible to propose a suitable model for the thick skinned deformation. The balanced cross-sections indicate shortenings of 11.2 km (18%) for the northern section and 10.9 km (17.3%) for the southern section. These values are different from the shortenings established by previous works in the region, reflecting differences in the assumed model to explain the basement-involved structures. According to our interpretation, the structural evolution of this fold and thrust belt was controlled by major basement-involved thrust systems with subordinate influence of inversion along pre-existing normal faults during the Andean compression.


2011 ◽  
Vol 182 (4) ◽  
pp. 337-346 ◽  
Author(s):  
Stéphane Molliex ◽  
Olivier Fabbri ◽  
Vincent Bichet ◽  
Herfried Madritsch

Abstract This study presents new constraints for Plio-Quaternary (post-2.4 Ma to present-day) anticline growth along the frontal zone of the Jura fold-and-thrust belt, in the Forêt de Chaux area, located 30 km SW of Besançon. The Forêt de Chaux area consists of a N080°E-elongated depression bordered by the Doubs and Loue rivers to the north and south respectively, and filled with Sundgau-type Pliocene alluvial deposits. The upper surface of the Pliocene deposits between the Loue and Doubs rivers is marked by a N065°E-trending ridge crossing the depression in a median position. A differential uplift along this ridge, post-dating the deposition of the gravels (2.4 Ma), is suggested by several geomorphological observations such as the opposite river migration on each side of the ridge as well as variations of drainage geometry and incision intensity. Geological and geophysical subsurface data indicate that the ridge roughly coincides with the axis of an anticline hidden beneath the Pliocene deposits. The observed uplift is presumably related to a post-2.4 Ma anticline growth. The fact that the azimuth of the hidden anticline axis is parallel to the strike of deep-seated Late Paleozoic basement faults and not to the local strike of the thin-skinned Jura structures indicates that the inferred post-Pliocene deformation could possibly be an expression of a recent thick-skinned deformation of the basement of the northern Alpine foreland. The focal depth (15 km) of the February 24th, 2004, Besançon earthquake supports the hypothesis of a basement fault reactivation.


Sign in / Sign up

Export Citation Format

Share Document