Determination of the equilibrium dissociation pressure of inorganic solids from TG: Application to the calculation of the enthalpy change of the reaction Pb3O2(CO)3⇔PbO+CO2

1998 ◽  
Vol 318 (1-2) ◽  
pp. 265-269
Author(s):  
J.M. Criado ◽  
M. González
1991 ◽  
Vol 56 (8) ◽  
pp. 1575-1579 ◽  
Author(s):  
Jiří Vobiš ◽  
Karel Mocek ◽  
Emerich Erdös

The formation of sodium disulfite by the heterogeneous reaction of solid active sodium sulfite with gaseous sulfur dioxide in the presence of water vapour was investigated over the temperature range of 293 to 393 K at SO2. H2O and O2 partial pressures of 1.2-7.4, 1.2-6.4 and 0-11.3 kPa, respectively. The effect of the reaction time was also examined. Kinetic measurements were supplemented with the determination of the equilibrium dissociation pressure of SO2 in contact with sodium sulfite at 373.15 K. The major aim of the work was to establish the optimum conditions for attaining the maximum degree of conversion of the solid reactant to sodium disulfite. The conditions for the formation of virtually pure sodium disulfite were found.


1997 ◽  
Vol 6 (8) ◽  
pp. 1771-1773 ◽  
Author(s):  
Chantal S. Morgan ◽  
James M. Holton ◽  
Barry D. Olafson ◽  
Pamela J. Bjorkman ◽  
Stephen L. Mayo

1975 ◽  
Vol 53 (16) ◽  
pp. 2365-2370 ◽  
Author(s):  
Don Betowski ◽  
Gervase Mackay ◽  
John Payzant ◽  
Diethard Bohme

The rate constants and equilibrium constant for the proton transfer reaction [Formula: see text] have been measured at 296 ± 2 K using the flowing afterglow technique: kforward = (2.9 ± 0.6) × 10−9 cm3molecule−1s−1, kreverse = (1.8 ± 0.4) × 10−10 cm3 molecule1 s−1, and K = 16 ± 2. The measured value of K corresponds to a standard free energy change, ΔG296°, of −1.6 ± 0.1 kcal mol−1 which provides values for the standard enthalpy change, ΔH298°= −1.0 ± 0.2 kcal mol−1, the bond dissociation energy, D00(H—CN) = 124 ± 2 kcal mol−1, and the proton affinity, p.a.(CN−) = 350 ± 1 kcal mol−1.


Sign in / Sign up

Export Citation Format

Share Document