Mesophilic and thermophilic activated sludge post-treatment of paper mill process water

2002 ◽  
Vol 36 (7) ◽  
pp. 1869-1879 ◽  
Author(s):  
J.C.T Vogelaar ◽  
E Bouwhuis ◽  
A Klapwijk ◽  
H Spanjers ◽  
J.B van Lier
BioResources ◽  
2015 ◽  
Vol 10 (2) ◽  
Author(s):  
Chen Chen ◽  
Shengtao Mao ◽  
Jingjing Wang ◽  
Jinfeng Bao ◽  
Hui Xu ◽  
...  

2021 ◽  
Vol 44 ◽  
pp. 102407
Author(s):  
Hans Estrella Cainglet ◽  
Tomas Saavedra ◽  
Stefan Bürgmayr ◽  
Jianhua Zhang ◽  
Zongli Xie ◽  
...  

Desalination ◽  
2002 ◽  
Vol 149 (1-3) ◽  
pp. 131-136 ◽  
Author(s):  
Mika Mänttäri ◽  
Arto Pihlajamäki ◽  
Marianne Nyström

1991 ◽  
Vol 23 (7-9) ◽  
pp. 1503-1507 ◽  
Author(s):  
L. M. Triet ◽  
N. T. Viet ◽  
T. V. Thinh ◽  
H. D. Cuong ◽  
J. C. L. van Buuren

The effluent from activated sludge treatment of petroleum wastewater was treated with the aid of a ponding system using aquatic plants (Water Hyacinth, Chlorella, Reed). A good result was obtained in this study. Pilot pond system shows that the purification efficiency depends on the residence time of about 14 days. The petroleum removal waa 97-98 %, the COD removal was from 88-93 %. The dissolved oxygen amount (with Chlorella) increased from 0.7 mg/l to 9.8 mg/l and the pH increased from 6.9 to 8-8.6. The application of 3 step biological pond with the use of Water Hyacinth, Chlorella, Reeds for post treatment of petroleum wastewater is appropriate in Vietnam.


1988 ◽  
Vol 20 (2) ◽  
pp. 143-152 ◽  
Author(s):  
A. Langi ◽  
M. Priha

The mutagenic properties of pulp and paper mill effluents were studied in three mills: bleached kraft mill with aerated lagoon treatment (Mill 1), bleached kraft mill with activated sludge treatment (Mill 2) and mechanical pulp/paper mill (Mill 3). Both treated and untreated effluents, process streams and molecular fractions were tested for mutagenicity (Ames test. Salmonella typhimurium TA100 and SCE sister chromatid exchange test, Chinese hamster ovary cells). To verify the potential environmental effects the mutagenic activity of concentrated recipient lake water (Mill 2) was also studied. The Ames mutagenicity of the bleached kraft mill effluent (BKME) originated from the first chlorination filtrate, SCE mutagenicity also occurred in the alkali extraction stage filtrate (Mill 1). No Ames mutagenicity was detected in the paper mill effluent, but it was SCE mutagenic. Activated sludge treatment of BKME removed both Ames and SCE mutagenicity, but the aerated lagoon treated BKME was still SCE mutagenic. No mutagenic activity was detected in the recipient water concentrates.


1992 ◽  
Vol 26 (9-11) ◽  
pp. 2543-2546
Author(s):  
M. Defrain ◽  
F. Schmidt

In the calculations customarily used to dimension nitrification and denitrification plants in the Federal Republic of Germany, solids in the influent of the biological stage represent a significant output variable. Numerous modified methods based on nationally and internationally standardized analysis procedures are available to determine solids concentrations in waste-water. Tests showed that different values are measured depending on the method of analysis employed. Harmonization of the analysis procedure is advisable to ensure comparable conditions for the calculation of activated sludge tank volumes. The solids reaching a treatment plant originate from two main sources. Filterable materials are passed to the treatment plant via the preceding sewerage network with its industrial and commercial users, but are also carried by process water from sludge treatment. The influence of process water on wastewater composition is illustrated by reference to the Wuppertal-Buchenhofen treatment plant.


1997 ◽  
Vol 35 (2-3) ◽  
pp. 7-14 ◽  
Author(s):  
A. Schnell ◽  
M. J. Sabourin ◽  
S. Skog ◽  
M. Garvie

As part of an extensive audit of the Alkaline-Peroxide Mechanical Pulping (APMPTM) plant at the Malette Quebec Inc. mill in St. Raymond, Que., effluents were sampled from various stages of the process for comprehensive chemical characterizations, aquatic toxicity testing and anaerobic biotreatability assessments. In addition, untreated and secondary treated combined effluent from the integrated paper mill were sampled to determine the effectiveness of a conventional activated sludge process at the mill site. During the one-day sampling period, the APMP plant processed a mixed wood furnish consisting of 50% spruce/balsam fir and 50% aspen, with a chemical charge of 3.5% sodium hydroxide and 3.8% hydrogen peroxide on oven-dry fibre, while the Machine Finish Coated (MFC) paper production rate was 100 odt/d (oven dry metric tonnes per day). Measured production-specific contaminant discharge loadings from the novel APMP process were 56 kg BOD5/odt and 155 kg COD/odt in a combined effluent flow of 28 m3/odt. Sources of process effluent were chip washing, three stages of wood chip pretreatment and chemical impregnation (i.e., Impressafiner stages), interstate washing and pulp cleaning. The three Impressafiner pressates were found to be the most concentrated (i.e., 12-26 g COD/L) and toxic streams. Microtox testing of the pressates revealed EC50 concentrations of 0.07-0.34% v/v. The warm and concentrated effluents generated by the non-sulphur APMP process were found to be highly amenable to anaerobic degradation as determined by batch bioassay testing. Filterable BOD5 and COD(f) of the process effluents were reduced by 87-95% and 70-77%, respectively, with corresponding theoretical methane yields being attained. Acid-soluble dissolved lignin compounds exhibited biorecalcitrance, as revealed by limited removals of 34-55%, and were the main constituents contributing to residual COD(f), while resin and fatty acids (RFA) were reduced by 80-94%. The conservatively operated full scale activated sludge treatment process achieved a similar high 74% COD(f) removal from the whole mill effluent, while BOD5 and RFA reductions were virtually complete and the treated effluent was non-toxic, as measured by Microtox.


Sign in / Sign up

Export Citation Format

Share Document