Supergene Sulfides and Sulfates in the Supergene Zones of Sulfide Ore Deposits

Author(s):  
P. Zuffardi ◽  
I. Salvadori
Keyword(s):  
Elements ◽  
2017 ◽  
Vol 13 (2) ◽  
pp. 89-95 ◽  
Author(s):  
Stephen J. Barnes ◽  
David A. Holwell ◽  
Margaux Le Vaillant

2020 ◽  
Vol 192 ◽  
pp. 03005
Author(s):  
Gennady Einbinder ◽  
Natalia Mitishova ◽  
Dmitry Radchenko ◽  
Egor Knyazkin

In the modern conditions, the scale of subsoil transformation in the process of mineral extraction is characterized by an increased risk of accidents, often accompanied by man-made disasters. In this regard, hazard analysis and accident risk assessment is the most important scientific and technical task, the solution of which is based on methods for identification of hazards, study of development trends and assessment of consequences of theoretically possible accidents. In relation to development conditions of sulfide ore deposits, only an accident risk assessment with determination of the possible accident hazard degree, as well as preparation and timely correction of measures aimed at reduction of accident risks can ensure an acceptable level of industrial safety at the hazardous production facility.


Geophysics ◽  
2012 ◽  
Vol 77 (5) ◽  
pp. WC3-WC13 ◽  
Author(s):  
Christof Mueller ◽  
Gilles Bellefleur ◽  
Erick Adam ◽  
Gervais Perron ◽  
Marko Mah ◽  
...  

The Downhole Seismic Imaging consortium conducted two consecutive vertical seismic profiling surveys in the Norman West mining camp (Sudbury, Canada) in 1998 and 1999. These were aimed toward imaging a massive sulfide ore deposit situated within the footwall of the Sudbury Igneous Complex (SIC). Three-component seismic data were acquired in four boreholes with variable signal-to-noise ratio and poor polarization quality. Consequently, the images suffered from strong azimuthal ambiguity. A strike filter, passing only reflections originating from within the SIC, was applied during migration to enhance interpretability of the images obtained. Migrated images showed structures correlating with the known position of an ore deposit located 1800 m away from one borehole (N40). Diffraction coherency migration enhanced the image of the deposit, and suggested strong seismic scattering from within the footwall of the SIC.


1997 ◽  
Vol 34 (10) ◽  
pp. 1405-1419 ◽  
Author(s):  
Mei-Fu Zhou ◽  
Reid R. Keays ◽  
Peter C. Lightfoot ◽  
Gordon G. Morrison ◽  
Michelle L. Moore

Chromian spinels occur in mafic–ultramafic inclusions in the Sublayer of the Sudbury Igneous Complex (SIC) as well as in mafic–ultramafic rocks in the immediate footwall of the Sublayer. The host rocks are pyroxenite and melanorite with minor dunite, harzburgite, and melatroctolite. As common accessory phases in these rocks, the chromian spinels display euhedral or subhedral forms and are included in olivine and orthopyroxene. Chromian spinel grains generally have ilmenite lamellae and contain abundant inclusions (zircon, olivine, diopside, plagioclase, biotite, and sulfide). All the chromian spinels have similar trace element abundances and are rich in TiO2 (0.5–15 wt.%). They have constant Cr# (100Cr/(Cr + Al)) (55–70) and exhibit a continuum in composition that traverses the normal fields of spinels in a Al–(Fe3+ + 2Ti)–Cr triangular diagram. This continuum extends to that of the composition of chromian magnetite in the host norite matrix to the mafic–ultramafic inclusions. This continuum in composition of the spinels suggests that the noritic matrix to the Sublayer formed from the same magma as the inclusions. A positive correlation between the Cr and Al contents of the spinels was probably produced by dilution of these elements by Fe3+ contributed, perhaps, by a plagioclase-saturated melt. Zircon inclusions in a chromian spinel grain reflect incorporation of crustal, felsic materials into the magma before crystallization of chromian spinel. The chemical characteristics and mineral inclusions of the spinels suggest that the Sublayer formed in response to magma mixing. It is suggested that subsequent to the formation of the crustal melt, mantle-derived high-Mg magmas mixed vigourously with this and generated the magmatic sulfides that eventually formed the Ni – Cu – platinum-group elements sulfide ore deposits. Some of the early crystallization products of the high-Mg magma settled to the chamber floor, where they partially mixed with the crustal melt and formed the mafic–ultramafic inclusions and footwall complexes.


1967 ◽  
Vol 88 (12) ◽  
pp. 1241-1250
Author(s):  
Masami ICHIKUNI

2010 ◽  
Vol 483 (3-4) ◽  
pp. 269-286 ◽  
Author(s):  
Craig D. Barrie ◽  
Alan P. Boyle ◽  
Nigel J. Cook ◽  
David J. Prior

Sign in / Sign up

Export Citation Format

Share Document