biological analysis
Recently Published Documents


TOTAL DOCUMENTS

515
(FIVE YEARS 89)

H-INDEX

44
(FIVE YEARS 7)

2022 ◽  
pp. 32-92
Author(s):  
Mario Contin ◽  
Cecilia Dobrecky ◽  
Sabrina Flor ◽  
Manuela Martinefski ◽  
Silvia Lucangioli ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Rafael Alfaro ◽  
Helios Martínez-Banaclocha ◽  
Santiago Llorente ◽  
Victor Jimenez-Coll ◽  
José Antonio Galián ◽  
...  

BackgroundThe diagnosis of graft rejection in kidney transplantation (KT) patients is made by evaluating the histological characteristics of biopsy samples. The evolution of omics sciences and bioinformatics techniques has contributed to the advancement in searching and predicting biomarkers, pathways, and new target drugs that allow a more precise and less invasive diagnosis. The aim was to search for differentially expressed genes (DEGs) in patients with/without antibody-mediated rejection (AMR) and find essential cells involved in AMR, new target drugs, protein-protein interactions (PPI), and know their functional and biological analysis.Material and MethodsFour GEO databases of kidney biopsies of kidney transplantation with/without AMR were analyzed. The infiltrating leukocyte populations in the graft, new target drugs, protein-protein interactions (PPI), functional and biological analysis were studied by different bioinformatics tools.ResultsOur results show DEGs and the infiltrating leukocyte populations in the graft. There is an increase in the expression of genes related to different stages of the activation of the immune system, antigenic presentation such as antibody-mediated cytotoxicity, or leukocyte migration during AMR. The importance of the IRF/STAT1 pathways of response to IFN in controlling the expression of genes related to humoral rejection. The genes of this biological pathway were postulated as potential therapeutic targets and biomarkers of AMR. These biological processes correlated showed the infiltration of NK cells and monocytes towards the allograft. Besides the increase in dendritic cell maturation, it plays a central role in mediating the damage suffered by the graft during AMR. Computational approaches to the search for new therapeutic uses of approved target drugs also showed that imatinib might theoretically be helpful in KT for the prevention and/or treatment of AMR.ConclusionOur results suggest the importance of the IRF/STAT1 pathways in humoral kidney rejection. NK cells and monocytes in graft damage have an essential role during rejection, and imatinib improves KT outcomes. Our results will have to be validated for the potential use of overexpressed genes as rejection biomarkers that can be used as diagnostic and prognostic markers and as therapeutic targets to avoid graft rejection in patients undergoing kidney transplantation.


2021 ◽  
Author(s):  
◽  
Febly Tho

<p>(+)-Peloruside A is a novel cytotoxic marine natural product isolated from the New Zealand sponge Mycale hentscheli(42). Peloruside A is a potential anticancer agent that has a similar mode of action to that of the successful drug paclitaxel. Biological analysis indicated that (+)-peloruside A promotes tubulin hyperassembly and cellular microtubule stabilisation which lead to mitosis blockage in the G2/M phase of the cell cycle and consequent cell apoptosis(43),(47). (-)-Laulimalide is also a cytotoxic natural product with microtubule stabilising bioactivity, and is a potential anticancer agent(47). Biological analysis showed that (+)-peloruside A and (-)-laulimalide are competitive, suggesting that they bind to the same active site(47). (+)-Peloruside A and (-)-laulimalide also display synergy with taxoids(47). Due to the structural complexity of peloruside A, our research has focused on developing an analogue 151 for ease of synthesis. Thus, the simplified C5-C9 dihydropyran moiety of (-)-laulimalide, with fewer stereocentres than that of (+)-peloruside A, has been incorporated into analogue 151 whilst retaining the 16- membered ring backbone of (+)-peloruside A. The proposed synthesis of 151 involves a Yamaguchi macrolactonization, a 1,5-anti-aldol coupling, and a ring closing metathesis as key reactions. This thesis reports on the synthesis of key fragments of analogue 151 and the crucial 1,5-anti-aldol coupling reaction for the assembly of the carbon backbone.</p>


2021 ◽  
Author(s):  
◽  
Febly Tho

<p>(+)-Peloruside A is a novel cytotoxic marine natural product isolated from the New Zealand sponge Mycale hentscheli(42). Peloruside A is a potential anticancer agent that has a similar mode of action to that of the successful drug paclitaxel. Biological analysis indicated that (+)-peloruside A promotes tubulin hyperassembly and cellular microtubule stabilisation which lead to mitosis blockage in the G2/M phase of the cell cycle and consequent cell apoptosis(43),(47). (-)-Laulimalide is also a cytotoxic natural product with microtubule stabilising bioactivity, and is a potential anticancer agent(47). Biological analysis showed that (+)-peloruside A and (-)-laulimalide are competitive, suggesting that they bind to the same active site(47). (+)-Peloruside A and (-)-laulimalide also display synergy with taxoids(47). Due to the structural complexity of peloruside A, our research has focused on developing an analogue 151 for ease of synthesis. Thus, the simplified C5-C9 dihydropyran moiety of (-)-laulimalide, with fewer stereocentres than that of (+)-peloruside A, has been incorporated into analogue 151 whilst retaining the 16- membered ring backbone of (+)-peloruside A. The proposed synthesis of 151 involves a Yamaguchi macrolactonization, a 1,5-anti-aldol coupling, and a ring closing metathesis as key reactions. This thesis reports on the synthesis of key fragments of analogue 151 and the crucial 1,5-anti-aldol coupling reaction for the assembly of the carbon backbone.</p>


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Huanqing Liu ◽  
Tingting Li ◽  
Xunda Ye ◽  
Jun Lyu

Background. Small-cell lung cancer (SCLC) is a major cause of carcinoma-related deaths worldwide. The aim of this study was to identify the key biomarkers and pathways in SCLC using biological analysis. Methods. Key genes involved in the development of SCLC were identified by downloading three datasets from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were screened using the GEO2R online analyzer; for the functional annotation and pathway enrichment analysis of genes, Funrich software was used. Construction of protein-to-protein interaction (PPI) networks was accomplished using the Search Tool for the Retrieval of Interacting Genes (STRING), and network visualization and module identification were performed using Cytoscape. Results. A total of 268 DEGs were ultimately obtained. The enriched functions and pathways of the upregulated DEGs included cell cycle, mitotic, and DNA replication, and the downregulated DEGs were enriched in epithelial-to-mesenchymal transition, serotonin degradation, and noradrenaline. Analysis of significant modules demonstrated that the upregulated genes are primarily concentrated in functions related to cell cycle and DNA replication. Kaplan-Meier analysis of hub genes revealed that they may promote the carcinogenesis and progression of SCLC. The result of ONCOMINE demonstrated that these 10 hub genes were significantly overexpressed in SCLC compared with normal samples. Conclusion. Identification of the molecular functions and signaling pathways of participating DEGs can deepen the current understanding of the molecular mechanisms of SCLC. The knowledge gained from this work may contribute to the development of treatment options and improve the prognosis of SCLC in the future.


2021 ◽  
Vol 4 (5) ◽  
pp. 22241-22248
Author(s):  
Leonardo Luiz Castelli Junior ◽  
Thalya Vitoria Becher ◽  
Kamuni Akkache Coutinho ◽  
Irineia Paulina Baretta ◽  
Rodrigo Leite Arrieira ◽  
...  

Author(s):  
Jesús D. Pineda ◽  
Saga Helgadottir ◽  
Benjamin Midtvedt ◽  
Alan Abirsh ◽  
Caroline B. Adiels ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document