Chapter 8 Rupture Dynamics on Bimaterial Faults and Nonlinear Off-Fault Damage

Author(s):  
Teruo Yamashita
Keyword(s):  
2019 ◽  
Vol 10 (1) ◽  
pp. 253-273 ◽  
Author(s):  
Ilya Svetlizky ◽  
Elsa Bayart ◽  
Jay Fineberg

Contacting bodies subjected to sufficiently large applied shear will undergo frictional sliding. The onset of this motion is mediated by dynamically propagating fronts, akin to earthquakes, that rupture the discrete contacts that form the interface separating the bodies. Macroscopic motion commences only after these ruptures have traversed the entire interface. Comparison of measured rupture dynamics with the detailed predictions of fracture mechanics reveals that the propagation dynamics, dissipative properties, radiation, and arrest of these “laboratory earthquakes” are in excellent quantitative agreement with the predictions of the theory of brittle fracture. Thus, interface fracture replaces the idea of a characteristic static friction coefficient as a description of the onset of friction. This fracture-based description of friction additionally provides a fundamental description of earthquake dynamics and arrest.


2020 ◽  
Author(s):  
Valère Lambert ◽  
Nadia Lapusta

Abstract. Substantial insight into earthquake source processes has resulted from considering frictional ruptures analogous to cohesive-zone shear cracks from fracture mechanics. This analogy holds for slip-weakening representations of fault friction that encapsulate the resistance to rupture propagation in the form of breakdown energy, analogous to fracture energy, prescribed in advance as if it were a material property of the fault interface. Here, we use numerical models of earthquake sequences with enhanced weakening due to thermal pressurization of pore fluids to show how accounting for thermo-hydro-mechanical processes during dynamic shear ruptures makes breakdown energy rupture-dependent. We find that local breakdown energy is neither a constant material property nor uniquely defined by the amount of slip attained during rupture, but depends on how that slip is achieved through the history of slip rate and dynamic stress changes during the rupture process. As a consequence, the frictional breakdown energy of the same location along the fault can vary significantly in different earthquake ruptures that pass through. These results suggest the need for re-examining the assumption of pre-determined frictional breakdown energy common in dynamic rupture modeling and for better understanding of the factors that control rupture dynamics in the presence of thermo-hydro-mechanical processes.


Langmuir ◽  
2001 ◽  
Vol 17 (20) ◽  
pp. 6045-6047 ◽  
Author(s):  
Hitoshi Suda
Keyword(s):  

2016 ◽  
Author(s):  
Matthias Rosenau ◽  
Fabio Corbi ◽  
Stephane Dominguez

Abstract. Since the formulation of Reid’s elastic rebound theory 100 years ago laboratory mechanical models combining frictional and elastic elements have joined the forefront of the research on the dynamics of earthquakes. In the last decade, with the advent of high resolution monitoring techniques and new rock analogue materials, laboratory earthquake experiments kept developing from simple spring-slider models to more sophisticated scaled analogue models. This evolution was accomplished by advances in seismology and geodesy which, along with a culmination of large earthquakes, have significantly increased the quality and quantity of relevant observations in nature. We here review the cornerstones of analogue earthquake model developments with a focus on scale models which are directly comparable to observational data on short to long timescales. We revisit the basics of analogue modelling, namely scaling, materials and monitoring, as applied in earthquake modelling. An overview of applications highlights the contributions of analogue earthquake models in bridging timescales of observations including earthquake statistics, rupture dynamics, ground motion and seismic cycle deformation up to seismotectonic evolution. We finally discuss limits, challenges and links to numerical models.


2012 ◽  
Vol 102 (3) ◽  
pp. 576a
Author(s):  
Yohichi Suzuki ◽  
Olga K. Dudko

2006 ◽  
Vol 33 (3) ◽  
Author(s):  
Letícia Fleck Fadel Miguel ◽  
Jorge Daniel Riera ◽  
L. A. Dalguer

Sign in / Sign up

Export Citation Format

Share Document