earthquake dynamics
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 17)

H-INDEX

17
(FIVE YEARS 2)

MAUSAM ◽  
2022 ◽  
Vol 46 (2) ◽  
pp. 187-192
Author(s):  
S. N. BHATTACHARYA ◽  
K.C. SINHA RAY ◽  
H. N. SRIVASTAVA

 Fractal dimension of the chaotic attractor for earthquake sequence in Nurek dam based on 22.000 earthquakes detected during the period 1976-87 has been studied for this total period of observations as well as for the period from December 1977 to December 1987. The second period excluded increased seismic activity during second stage of filling the reservoir. Large fractal dimensions of the chaotic at tractor of 8.3 and 7.3 were found for the respective period which suggests the complexity of earthquake .dynamics in this region as compared to Koyna reservoir.  


2021 ◽  
Author(s):  
Md Shumon Mia ◽  
Mohamed Abdelmeguid ◽  
Ahmed Elbanna

Earthquakes are among nature’s deadliest and costliest hazards. Understanding mechanisms for earthquake nucleation, propagation, and arrest is key for developing reliable operational forecasts and next generation seismic hazard models. While significant progress has been made in understanding source processes in linear elastic domains, the response of the rocks near the fault is complex and likely to be inelastic due to the extreme stresses and deformations associated with fault slip. The effect of this more realistic fault zone response on seismic and aseismic fault slip is poorly understood. Here, we simulate sequence of earthquake and aseismic slip of a fault embedded in an elastic-viscoplastic bulk subject to slow tectonic loading. We show that off-fault plasticity significantly influences the source characteristics. Specifically, off-fault plasticity may lead to partial ruptures and emergence of spatial segmentation as well as hierarchical temporal seismic clustering. Furthermore, co-evolution of fault slip and off-fault bulk plasticity may lead to heterogeneous rupture propagation and results in pockets of slip deficit. While the energy dissipated through plastic deformation remains a small fraction of the total energy budget, its impact on the source characteristics is disproportionally large through the redistribution of stresses and viscous relaxation. Our results suggest a new mechanism of dynamic heterogeneity in earthquake physics that can be active for both small and large earthquakes and may have important implications on earthquake size distribution and energy budget. Furthermore, this plasticity-induced self-limiting crack dynamics may be relevant for other dynamic fracture applications and design of dynamically tough materials.


2021 ◽  
Vol 64 (4) ◽  
pp. SE441
Author(s):  
Andrea Bizzarri ◽  
Alberto Petri ◽  
Andrea Baldassarri

The traction evolution is a fundamental ingredient to model the dynamics of an earthquake rupture which ultimately controls, during the coseismic phase, the energy release, the stress redistribution and the consequent excitation of seismic waves. In the present paper we explore the use of the friction behavior derived from laboratory shear experiments performed on granular materials at low normal stress. We find that the rheological properties emerging from these laboratory experiments can not be described in terms of preexisting governing models already presented in literature; our results indicate that neither rate–and state–dependent friction laws nor nonlinear slip–dependent models, commonly adopted for modeling earthquake ruptures, are able to capture all the features of the experimental data. Then, by exploiting a novel numerical approach, we directly incorporate the laboratory data into a code to simulate the fully dynamic propagation of a 3–D slip failure. We demonstrate that the rheology of the granular material, imposed as fault boundary condition, is dynamically consistent. Indeed, it is able to reproduce the basic features of a crustal earthquake, spontaneously accelerating up to some terminal rupture speed, both sub– and supershear.


2021 ◽  
Vol 64 (2) ◽  
Author(s):  
Andrea Bizzarri

Within a fault governing model the characteristic scale length is one of the most relevant physical parameters because it accounts for the so–called fracture energy (density) of the system, its dynamics, the time during which the accumulated stress is released and the seismic waves are excited, the amount of slip developed during an instability event. Friction laboratory experiments reveal that it is not a material property, but that it changes with the sliding velocity. We propose two rather different analytical models to fit laboratory evidence and we incorporate them into a fault model able to simulate repeated earthquakes in the framework of various formulations of rate and state friction. We demonstrate that temporal variations of the scale length do not prevent the system to reach its limit cycle, but they systematically reduce the magnitude of the expected event (both in term of developed slip, and thus seismic moment, and released stress) and also reduce the inter–event time (recurrence interval). Depending on the friction model, the system can penetrate into the stable regime and can either continue the accelerating phase toward to failure or decelerate and abort instability.


Author(s):  
Jiuxun Yin ◽  
Zefeng Li ◽  
Marine A. Denolle

Abstract We cluster a global database of 3529 Mw>5.5 earthquakes in 1995–2018 based on a dynamic time warping distance between earthquake source time functions (STFs). The clustering exhibits different degrees of complexity of the STF shapes and suggests an association between STF complexity and earthquake source parameters. Most of the thrust events have simple STF shapes across all depths. In contrast, earthquakes with complex STF shapes tend to be located at shallow depths in complicated tectonic regions, exhibit long source duration compared with others of similar magnitude, and tend to have strike-slip mechanisms. With 2D dynamic modeling of dynamic ruptures on heterogeneous fault properties, we find a systematic variation of the simulated STF complexity with frictional properties. Comparison between the observed and synthetic clustering distributions provides useful constraints on frictional properties. In particular, the characteristic slip-weakening distance could be constrained to be short (<0.1  m) and depth dependent if stress drop is in general constant.


BANGUNAN ◽  
2021 ◽  
Vol 26 (1) ◽  
pp. 29
Author(s):  
Ainun Nafis ◽  
Eko Setyawan ◽  
Mohammad Musthofa Al Mohammad Musthofa

Abstrak: Masalah dalam perencanaan struktur jalan kereta seperti tinggi lereng embankment yang lebih dari sama dengan 6 m, tanah asli yang tergolong sedang lunak, dan merupakan daerah rawan terjadinya longsor merupakan alasan dilakukannya penelitian ini. Hal tersebut didukung oleh hasil uji lab tanah, kondisi geografis dan geologis Kabupaten Purwakarta berupa bukit dan lembah yang terbentuk dari endapan batuan sedimen dan aluvium vulkanik dengan kemiringan lahan 8-40%. Oleh karena itu penelitian ini bertujuan untuk mengetahui stabilitas lereng embankment berupa nilai safety factor pada jalur kereta cepat Jakarta-Bandung daerah konstruksi DK70+150.00 sampai DK70+181.88. Adapun analisis numerik yang dilakukan pada penelitian ini menggunakan program Plaxis 8.6 yang dikembangkan berdasarkan metode Finite Element dengan model Mohr-Coulomb. Proses analisis dengan menginput parameter material yang dibutuhkan berdasarkan Mohr-Coulomb. Hasil analisis berupa angka safety factor yang menunjukkan kondisi stabilitas suatu lereng embankment. Penambahan alternatif perkuatan lereng embankment berupa cerucuk (micropile), bronjong (gabion) dan geotextile sebagai upaya pencegahan adanya kelongsoran jangka pendek dan panjang pada lereng embankment yang tidak stabil. Hasil analisis lereng embankment kereta api cepat Jakarta-Bandung DK70+150 sampai DK70+181.88 kondisi eksisting sebesar ΣMSF 1,1565 (cek global) dan ΣMSF 1,0515 (cek dinamik gempa) yang artinya lereng dalam kondisi tidak stabil dan perlu penambahan alternatif perkuatan. Berdasarkan simulasi kombinasi alternatif perkuatan. Menunjukkan kombinasi alternatif perkuatan geotextile dengan micropile menghasilkan angka safety factor ΣMSF 1,8151 (cek stabilitas global) dan ΣMSF 1,6262 (cek stabilitas akibat beban dinamik gempa).Kata-kata kunci: stabilitas lereng embankment, Plaxis 8.6, safety factor, kereta cepat Jakarta-BandungAbstract: Problems in the design of the railway structure such as the embankment slope height of 6 m, the original soil which is classified as moderately soft, and is an area prone to landslides is the reason for conducting this research. This is supported by the results of soil lab tests, geographical and geological conditions of Purwakarta Regency in the form of hills and valleys formed from sedimentary rock deposits and volcanic alluvium with a slope of 8-40%. Therefore, this study aims to determine the stability of the embankment slope in the form of the safety factor value on the Jakarta-Bandung high-speed rail line in the construction area DK70+150.00 to DK70+181.88. The numerical analysis carried out in this study used the Plaxis 8.6 program which was developed based on the Finite Element method with the Mohr-Coulomb model. The analysis process by inputting the required material parameters based on Mohr-Coulomb. The results of the analysis are in the form of safety factor numbers which indicate the stability condition of an embankment slope. The addition of alternative reinforcement for embankment slopes in the form of micropile, gabion (gabion) and geotextile as an effort to prevent short and long term landslides on unstable embankment slopes. The results of the slope analysis of the Jakarta-Bandung high-speed rail embankment DK70+150 to DK70+181.88 existing conditions of MSF: 1.1565 (global check) and MSF: 1.0515 (earthquake dynamics check) which means the slope is in an unstable condition and needs additional alternative reinforcement. Based on the simulation of alternative reinforcement combinations. Showing the alternative combination of geotextile reinforcement with micropile produces a safety factor number MSF: 1.8151 (check global stability) and MSF: 1.6262 (check stability due to dynamic earthquake loads)..Keywords: embankment slope stability, Plaxis 8.6, safety factor, Jakarta-Bandung high-speed train


Author(s):  
Whitney M. Behr ◽  
Roland Bürgmann

Deep-seated slow slip and tremor (SST), including slow slip events, episodic tremor and slip, and low-frequency earthquakes, occur downdip of the seismogenic zone of numerous subduction megathrusts and plate boundary strike-slip faults. These events represent a fascinating and perplexing mode of fault failure that has greatly broadened our view of earthquake dynamics. In this contribution, we review constraints on SST deformation processes from both geophysical observations of active subduction zones and geological observations of exhumed field analogues. We first provide an overview of what has been learned about the environment, kinematics and dynamics of SST from geodetic and seismologic data. We then describe the materials, deformation mechanisms, and metamorphic and fluid pressure conditions that characterize exhumed rocks from SST source depths. Both the geophysical and geological records strongly suggest the importance of a fluid-rich and high fluid pressure habitat for the SST source region. Additionally, transient deformation features preserved in the rock record, involving combined frictional-viscous shear in regions of mixed lithology and near-lithostatic fluid pressures, may scale with the tremor component of SST. While several open questions remain, it is clear that improved constraints on the materials, environment, structure, and conditions of the plate interface from geophysical imaging and geologic observations will enhance model representations of the boundary conditions and geometry of the SST deformation process. This article is part of a discussion meeting issue ‘Understanding earthquakes using the geological record’.


2020 ◽  
Author(s):  
Thomas Ulrich ◽  
Alice-Agnes Gabriel ◽  
Elizabeth Madden

Megathrust faults host the largest earthquakes on Earth which can trigger cascading hazards such as devastating tsunamis.Determining characteristics that control subduction zone earthquake and tsunami dynamics is critical to mitigate megathrust hazards, but is impeded by structural complexity, large spatio-temporal scales, and scarce or asymmetric instrumental coverage.Here we show that tsunamigenesis and earthquake dynamics are controlled by along-arc variability in regional tectonic stresses together with depth-dependent variations in rigidity and yield strength of near-fault sediments. We aim to identify dominant regional factors controlling megathrust hazards. To this end, we demonstrate how to unify and verify the required initial conditions for geometrically complex, multi-physics earthquake-tsunami modeling from interdisciplinary geophysical observations. We present large-scale computational models of the 2004 Sumatra-Andaman earthquake and Indian Ocean tsunami that reconcile near- and far-field seismic, geodetic, geological, and tsunami observations and reveal tsunamigenic trade-offs between slip to the trench, splay faulting, and bulk yielding of the accretionary wedge.Our computational capabilities render possible the incorporation of present and emerging high-resolution observations into dynamic-rupture-tsunami models. Our findings highlight the importance of regional-scale structural heterogeneity to decipher megathrust hazards.


Sign in / Sign up

Export Citation Format

Share Document