static friction coefficient
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 42)

H-INDEX

15
(FIVE YEARS 2)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 448
Author(s):  
Wojciech S. Gora ◽  
Jesper V. Carstensen ◽  
Krystian L. Wlodarczyk ◽  
Mads B. Laursen ◽  
Erica B. Hansen ◽  
...  

In recent years, there has been an increased uptake for surface functionalization through the means of laser surface processing. The constant evolution of low-cost, easily automatable, and highly repeatable nanosecond fibre lasers has significantly aided this. In this paper, we present a laser surface-texturing technique to manufacture a surface with a tailored high static friction coefficient for application within driveshafts of large marine engines. The requirement in this application is not only a high friction coefficient, but a friction coefficient kept within a narrow range. This is obtained by using nanosecond-pulsed fibre lasers to generate a hexagonal pattern of craters on the surface. To provide a suitable friction coefficient, after laser processing the surface was hardened using a chromium-based hardening process, so that the textured surface would embed into its counterpart when the normal force was applied in the engine application. Using the combination of the laser texturing and surface hardening, it is possible to tailor the surface properties to achieve a static friction coefficient of ≥0.7 with ~3–4% relative standard deviation. The laser-textured and hardened parts were installed in driveshafts for ship testing. After successfully performing in 1500 h of operation, it is planned to adopt the solution into production.


Agriculture ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 38
Author(s):  
Gaokun Shi ◽  
Jingbin Li ◽  
Longpeng Ding ◽  
Zhiyuan Zhang ◽  
Huizhe Ding ◽  
...  

Discrete element method (DEM) simulation is an important method to analyze the interaction relationship between materials and equipment, and to develop machinery and/or equipment. However, it is necessary to input specific simulation parameters when establishing a DEM simulation model. In this study, the interval values were measured through angle of repose tests of fallen jujube fruit (FJF), and the simulation angle of repose tests for FJF were established with EDEM software (DEM Solutions Ltd. Edinburgh, Scotland, UK). Then, the Plackett-Burman design, steepest ascent search experiment, and center composite design experimental methods were utilized to obtain the specific values of the simulation parameters from the interval values. The results showed that significant influencing factors in the simulation angle of repose include the Poisson’s ratio, the static friction coefficient between FJF, and the static friction coefficient between FJF and the steel plate, for which the optimal values were 0.248, 0.480, and 0.309, respectively. The angle of repose tests’ results showed that the error was 0.53% between the simulation angle of repose (29.69°) and the angle of repose (29.85°). In addition, the flow rate test results showed that the average error was 5.84% between the physical and simulation tests. This indicated that the calibrated parameters were accurate and reliable, and that the simulation model can accurately represent the physical tests. Consequently, this study provides an EDEM model of FJF that was essential in designing machinery and equipment through the EDEM simulation method.


2021 ◽  
Vol 71 (2) ◽  
pp. 329-342
Author(s):  
Welch Michael

Abstract The purpose of this paper is to develop an understanding of how bolt preloads are distributed within a joint as each bolt is tightened in turn by the use of a calibrated torque wrench. It discusses how the order that the joints nuts/bolts are tightened can affect the final bolt preload. It also investigates the effect on incrementally increasing the bolt preload through a series of applications of the controlled torque tightening sequence. Classical analysis methods are used to develop a method of analysis that can be applied to most preloaded bolted joints. It is assumed that the static friction coefficient is approximately 15% less than the dynamic friction. It is found that the bolt preload distribution across the joint can range from slightly above the target preload to significantly less than the target preload. The bolts with a preload greater than the target preload are found to be those tightened towards the end of the tightening sequence, usually located close to the outer edges of the joint’s bolt array. The bolts with a preload less than the target preload are those tightened early in the tightening sequence, located centrally within the joints bolt array. The methods presented can be used to optimise bolted joint design and assembly procedures. Optimising the design of preloaded bolted joints leads to more efficient use of the joints.


2021 ◽  
Author(s):  
Bertil Trottet ◽  
Ron Simenhois ◽  
Grégoire Bobillier ◽  
Alec van Herwijnen ◽  
Chenfanfu Jiang ◽  
...  

Abstract Snow slab avalanches are released following anticrack propagation in highly porous weak snow layers buried below cohesive slabs. The volumetric collapse of the weak layer leads to the closure of crack faces followed by the onset of frictional contact. Here on the basis of snow fracture experiments, full-scale avalanche measurements, and numerical simulations, we report the existence of a transition from sub-Rayleigh anticrack to supershear crack propagation involving the Burridge-Andrews mechanism. Remarkably, this transition occurs even if the shear-to-normal stress ratio is lower than the static friction coefficient as a result of the loss of frictional resistance during collapse. This finding represents a new paradigm in our understanding of snow slab avalanches presenting fundamental similarities with strike-slip earthquakes.


Author(s):  
Renzhen Chen ◽  
Xiaopeng Li ◽  
Jinchi Xu ◽  
Zemin Yang ◽  
Hexu Yang

The primary objective of this fundamental research is to investigate the mechanical properties of the disk spring when the friction at the contact edges is asymmetric and varies with the load. The contact mechanics study shows that the static friction and static friction coefficient on fractal surfaces change depending on the normal load. In this paper, a fractal contact model based on the W-M function is used to explore the connection between the static friction and the normal load. Subsequently, taking into account the asymmetry of the contact surface at the edge, the variable static friction coefficient is brought into the existing model to obtain an improved static model of the disk spring. Different fractal dimensions, frictional states and free heights are considered under quasi-static loading condition, the relative errors between this paper and the method using Coulomb friction are also calculated, and experimental validation was performed. The static stiffness and force hysteresis of the disk spring for different forms of asymmetric variable friction are discussed. It is shown that using the variable friction model can improve the computational accuracy of the disk spring model under small loads and help to improve the design and control accuracy of preload and vibration isolation equipment using the disk spring as a component.


2021 ◽  
pp. 467-476
Author(s):  
Rong Fan ◽  
Qingliang Cui ◽  
Yanqing Zhang ◽  
Qi Lu

The stacking test based on response surface method (RSM) was carried out to calibrate the simulation parameters of buckwheat grain by discrete element method (DEM). The static friction coefficient of buckwheat-buckwheat and that of buckwheat-steel are significant factors affecting the repose angle. A quadratic polynomial model for the repose angle and the 2 significant parameters was established and optimized. The optimal combination was obtained: buckwheat-buckwheat static friction coefficient of 0.482, buckwheat-steel static friction coefficient of 0.446. It was found that there was no significant difference between the results of the simulation test and physical test (P>0.05), indicating that the parameter calibration method based on RSM is feasible. The calibrated parameters can provide reference to the simulation of buckwheat production process and machineries design.


2021 ◽  
pp. 175-184
Author(s):  
Bing Xu ◽  
Yanqing Zhang ◽  
Qingliang Cui ◽  
Shaobo Ye ◽  
Fan Zhao

In view of the lack of seeds contact parameters that can be used as a reference for the design of key mechanical components such as buckwheat planting, harvesting, and processing, this study combines simulation optimization design experiments and physical experiments to calibrate the parameters of simulated discrete element of buckwheat seeds. The non-spherical particle model of buckwheat seeds was established using the automatic filling method, and the simulation accumulating test and physical accumulating test were carried out using the bottomless conical cylinder lifting method; the repose angle of buckwheat seeds was taken as the response value, and the initial parameters were screened for significance based on the Plackett-Burman test; and a second-order regression model of the error value for the repose angle and the significance parameter was established based on the steepest climb test and Box-Behnken test. On this basis, the minimum error value of the repose angle was used as the goal to optimize the significance parameter, the optimal combination of contact parameters was obtained, and parameter validation tests were carried out. The significance screening test showed that the buckwheat-buckwheat static friction coefficient, the buckwheat-stainless steel rolling friction coefficient, and the buckwheat-stainless steel restitution coefficient had significant effects on the repose angle of buckwheat (P<0.05). The optimization test showed that the buckwheat-buckwheat static friction coefficient was 0.510, the buckwheat-stainless steel rolling friction coefficient was 0.053, and the buckwheat-stainless steel restitution coefficient was 0.492. The validation test showed that the repose angle of buckwheat seeds under such parameter was 25.39°, and the error with the repose angle of the physical test was 0.55%, which indicated that the optimal parameter combination was reliable. This study could provide a seed model and simulation contact parameters for the research and development of buckwheat sowing, threshing and hulling machinery.


Author(s):  
Ruiming Zou ◽  
Shihui Luo ◽  
Weihua Ma

In practice, due to the influence of assembly deviation, clearance, vibration and other objective factors, the coupler will inevitably work under asymmetrical conditions in the buffing state. However, the existing theoretical studies on the compression stability of couplers did not pay enough attention to this condition, and most of the studies are based on the premise of ideal symmetry conditions. In this paper, the initial lateral deviation between the ends of a coupling coupler is taken as a typical asymmetrical condition, and the influence of the initial asymmetrical condition on the compression stability of the coupler is analysed by theoretical analysis and dynamic simulation. The results show that with the increase of the initial lateral deviation, the rotation angle of the coupler will also increase when it reaches the self-stabilizing equilibrium point. Therefore, the initial asymmetry will reduce the stability margin of the coupler, and then weaken the self-stabilizing ability and compression stability of the coupler. Improving the symmetry of the coupler is also one of the effective methods to guarantee the compression stability of the coupler and the running safety of the locomotive. When the static friction coefficient of the coupler tail can reach 0.3, the initial lateral deviation of the coupler should be limited to less than 7 mm, and the smaller the static friction coefficient, the higher the requirements for the initial lateral deviation.


2021 ◽  
pp. 413-424
Author(s):  
Fandi Zeng ◽  
Xuying Li ◽  
Yongzhi Zhang ◽  
Zhiwei Zhao ◽  
Cheng Cheng

Dynamic soil behaviour at the contact interface during transplanting makes it difficult to ensure transplanting quality. To solve this problem, the Hertz-Mindlin with bonding contact model was used to calibrate the parameters of soils in Inner Mongolia. Based on the response surface design principle, four-factor and three-level tests were performed using the repose angle as an evaluation index, and the following influence factors were considered: the soil-soil restoration coefficient, the soil-steel restoration coeficient, the soil-steel static friction coefficient and the soil-steel static friction coefficient. A regression model was analysed, and an optimization procedure yielded the following optimum combination of parameters: a soil-soil restoration coefficient of 0.45, a soil-steel restoration coefficient of 0.35, a soil-steel static friction coefficient of 0.85 and a soil-steel rolling friction coefficient of 0.13. This optimal combination was used to simulate the soil at the contact interface. The particle dynamic behaviour and soil particle mass flow were used to analyse the soil dynamic behaviour, showing that the average mass flow during the gradual opening of the duckbilled planter tends to increase over time; when the duckbilled planter gradually leaves soil, the contact interface of soil particles in the corner of the duckbilled planter unit causes a reduction in the fluctuation range of the soil mass flow, which exhibits a wave-like change. After the duckbilled planter has left soil, the contact interface of the soil changes tends to stabilize. The duckbilled planter-soil discrete element simulation model was verified. The results of this study provide a reference for the optimal design of a duckbilled planter structure.


Sign in / Sign up

Export Citation Format

Share Document