Positron Emission Tomography: An Advanced Nuclear Medicine Imaging Technique from Research to Clinical Practice

Author(s):  
Rakesh Kumar ◽  
Suman Jana
1994 ◽  
Vol 7 (3) ◽  
pp. 124-139 ◽  
Author(s):  
Richard J. Hammes ◽  
John W. Babich

Positron emission tomography {PET) is a nuclear medicine imaging technique which exploits the unique physical characteristics of radionuclides that decay by positron emission. These characteristics allow for in vivo quantitative measurement of three-dimensional distributions of radioactivity with a spatial resolution of 5 mm using current detector technology. In addition to these physical advantages, PET is the only imaging technique that can use the short-lived positron emitting radionuclides of the so-called “organic” elements: carbon (C-11), nitrogen (N-13), and oxygen (0–15). These elements are the building blocks of physiological compounds and can be used to study most enzymes, receptors, and other metabolically important compounds and their associated reactions. PET allows for the study of a variety of physiological and biochemical processes through the application of particular radiopharmaceuticals. PET has also been used to study the interaction of receptor-specific ligands in several receptor systems including dopaminergic, adrenergic, serotinergic, and opiod. C-11 and F-18 labeled receptor ligands have been used to study receptor selectivity and receptor concentrations in vivo. Recently, PET has been used to measure the pharmacokinetics of several novel antibiotics in humans allowing the direct measurement of tissue concentrations and correlation with classical pharmacokinetic parameters. This review discusses some of the current applications of PET in more detail.


2020 ◽  
Vol 93 (1110) ◽  
pp. 20200095 ◽  
Author(s):  
Sofia C. Vaz ◽  
Francisco Oliveira ◽  
Ken Herrmann ◽  
Patrick Veit-Haibach

Currently, Nuclear Medicine has a clearly defined role in clinical practice due to its usefulness in many medical disciplines. It provides relevant diagnostic and therapeutic options leading to patients' healthcare and quality of life improvement. During the first two decades of the 21stt century, the number of Nuclear Medicine procedures increased considerably. Clinical and research advances in Nuclear Medicine and Molecular Imaging have been based on developments in radiopharmaceuticals and equipment, namely, the introduction of multimodality imaging. In addition, new therapeutic applications of radiopharmaceuticals, mainly in oncology, are underway. This review will focus on radiopharmaceuticals for positron emission tomography (PET), in particular, those labeled with Fluorine-18 and Gallium-68. Multimodality as a key player in clinical practice led to the development of new detector technology and combined efforts to improve resolution. The concept of dual probe (a single molecule labeled with a radionuclide for single photon emission computed tomography)/positron emission tomography and a light emitter for optical imaging) is gaining increasing acceptance, especially in minimally invasive radioguided surgery. The expansion of theranostics, using the same molecule for diagnosis (γ or positron emitter) and therapy (β minus or α emitter) is reshaping personalized medicine. Upcoming research and development efforts will lead to an even wider array of indications for Nuclear Medicine both in diagnosis and treatment.


2018 ◽  
Vol 46 (3-4) ◽  
pp. 154-167 ◽  
Author(s):  
Yejin Kim ◽  
Paul Rosenberg ◽  
Esther Oh

Background: Molecular imaging of brain amyloid for the diagnosis of Alzheimer’s disease (AD) using positron emission tomography (PET) has been approved for use in clinical practice by the Food and Drug Administration (FDA) since 2012. However, the clinical utility and diagnostic impact of amyloid PET imaging remain controversial. We conducted a review of the recent studies investigating clinical utility of amyloid PET imaging with focus on changes in diagnosis, diagnostic confidence, and patient management. Summary: A total of 16 studies were included in the final analysis. Overall rate of changes in diagnosis after amyloid PET ranged from 9 to 68% (pooled estimate of 31%, 95% CI 23–39%). All studies reported overall increase in diagnostic confidence or diagnostic certainty after amyloid PET. Changes in patient management ranged from 37 to 87%; the most common type of change in management reported was either the initiation or discontinuation of planned AD medications. Key Messages: Amyloid PET imaging led to moderate to significant changes in diagnosis, diagnostic confidence, and subsequent patient management. It may be most useful in patients with high level of diagnostic uncertainty even after the completing the standard workup.


2020 ◽  
Vol 267 (11) ◽  
pp. 3429-3435
Author(s):  
Timothy Rittman

Abstract Neuroimaging for dementia has made remarkable progress in recent years, shedding light on diagnostic subtypes of dementia, predicting prognosis and monitoring pathology. This review covers some updates in the understanding of dementia using structural imaging, positron emission tomography (PET), structural and functional connectivity, and using big data and artificial intelligence. Progress with neuroimaging methods allows neuropathology to be examined in vivo, providing a suite of biomarkers for understanding neurodegeneration and for application in clinical trials. In addition, we highlight quantitative susceptibility imaging as an exciting new technique that may prove to be a sensitive biomarker for a range of neurodegenerative diseases. There are challenges in translating novel imaging techniques to clinical practice, particularly in developing standard methodologies and overcoming regulatory issues. It is likely that clinicians will need to lead the way if these obstacles are to be overcome. Continued efforts applying neuroimaging to understand mechanisms of neurodegeneration and translating them to clinical practice will complete a revolution in neuroimaging.


2019 ◽  
Vol 12 (3) ◽  
pp. 137 ◽  
Author(s):  
Julia Greiser ◽  
Wolfgang Weigand ◽  
Martin Freesmeyer

This article reviews the use of metal complexes as contrast agents (CA) and radiopharmaceuticals for the anatomical and functional imaging of the liver. The main focus was on two established imaging modalities: magnetic resonance imaging (MRI) and nuclear medicine, the latter including scintigraphy and positron emission tomography (PET). The review provides an overview on approved pharmaceuticals like Gd-based CA and 99mTc-based radiometal complexes, and also on novel agents such as 68Ga-based PET tracers. Metal complexes are presented by their imaging modality, with subsections focusing on their structure and mode of action. Uptake mechanisms, metabolism, and specificity are presented, in context with advantages and limitations of the diagnostic application and taking into account the respective imaging technique.


2009 ◽  
Vol 69 (1) ◽  
pp. 50-58 ◽  
Author(s):  
Robert Lavayssière ◽  
Anne-Elizabeth Cabée ◽  
Jean-Emmanuel Filmont

Sign in / Sign up

Export Citation Format

Share Document