Conformational Stability of Cytochrome c Probed by Optical Spectroscopy

Author(s):  
Reinhard Schweitzer-Stenner ◽  
Andrew Hagarman ◽  
Daniel Verbaro ◽  
Jonathan B. Soffer
1982 ◽  
Vol 203 (2) ◽  
pp. 483-492 ◽  
Author(s):  
M T Wilson ◽  
P Jensen ◽  
R Aasa ◽  
B G Malmström ◽  
T Vänngård

Cytochrome oxidase (EC 1.9.3.1; ferrocytochrome c:oxygen oxidoreductase) was studied during steady-state by optical and e.p.r. methods. Starting with either the ‘resting’ or the ‘pulsed’ enzyme, oxidase, cytochrome c, ascorbate and O2 were mixed and the reaction monitored optically. Tetramethylphenylenediamine was used as mediator to poise the steady-state to the desired reduction level. After mixing, the reaction was quenched by the used of rapid-freeze techniques. The e.p.r. spectra of samples captured at increasing tetramethylphenylenediamine concentrations (i.e. higher electron flux) show decreasing g = 2 (Cu A) and g = 3 (cytochrome a) signals. No Cu B or g = 6 signals (high-spin cytochrome a3) could be found during the reaction. Also, the signal with peaks at g = 1.69, 1.78 and 5 as well as the g = 12 signal was hardly detectable at higher turnover rates. The only new signal appearing during turnover is a radical signal, which is discussed in terms of a protein radical. Finally, a scheme is presented, proposing a catalytic cycle for cytochrome oxidase with respect to the O2 binding Cu B-cytochrome a3 unit.


2014 ◽  
Vol 19 (5) ◽  
pp. 055001 ◽  
Author(s):  
Jangwoen Lee ◽  
Jae G. Kim ◽  
Sari B. Mahon ◽  
David Mukai ◽  
David Yoon ◽  
...  

2006 ◽  
Vol 12 (2) ◽  
pp. 257-266 ◽  
Author(s):  
Nataša Tomášková ◽  
Rastislav Varhač ◽  
Gabriel Žoldák ◽  
Lenka Olekšáková ◽  
Dagmar Sedláková ◽  
...  

Author(s):  
Dimitrij Lang

The success of the protein monolayer technique for electron microscopy of individual DNA molecules is based on the prevention of aggregation and orientation of the molecules during drying on specimen grids. DNA adsorbs first to a surface-denatured, insoluble cytochrome c monolayer which is then transferred to grids, without major distortion, by touching. Fig. 1 shows three basic procedures which, modified or not, permit the study of various important properties of nucleic acids, either in concert with other methods or exclusively:1) Molecular weights relative to DNA standards as well as number distributions of molecular weights can be obtained from contour length measurements with a sample standard deviation between 1 and 4%.


2004 ◽  
Vol 71 ◽  
pp. 97-106 ◽  
Author(s):  
Mark Burkitt ◽  
Clare Jones ◽  
Andrew Lawrence ◽  
Peter Wardman

The release of cytochrome c from mitochondria during apoptosis results in the enhanced production of superoxide radicals, which are converted to H2O2 by Mn-superoxide dismutase. We have been concerned with the role of cytochrome c/H2O2 in the induction of oxidative stress during apoptosis. Our initial studies showed that cytochrome c is a potent catalyst of 2′,7′-dichlorofluorescin oxidation, thereby explaining the increased rate of production of the fluorophore 2′,7′-dichlorofluorescein in apoptotic cells. Although it has been speculated that the oxidizing species may be a ferryl-haem intermediate, no definitive evidence for the formation of such a species has been reported. Alternatively, it is possible that the hydroxyl radical may be generated, as seen in the reaction of certain iron chelates with H2O2. By examining the effects of radical scavengers on 2′,7′-dichlorofluorescin oxidation by cytochrome c/H2O2, together with complementary EPR studies, we have demonstrated that the hydroxyl radical is not generated. Our findings point, instead, to the formation of a peroxidase compound I species, with one oxidizing equivalent present as an oxo-ferryl haem intermediate and the other as the tyrosyl radical identified by Barr and colleagues [Barr, Gunther, Deterding, Tomer and Mason (1996) J. Biol. Chem. 271, 15498-15503]. Studies with spin traps indicated that the oxo-ferryl haem is the active oxidant. These findings provide a physico-chemical basis for the redox changes that occur during apoptosis. Excessive changes (possibly catalysed by cytochrome c) may have implications for the redox regulation of cell death, including the sensitivity of tumour cells to chemotherapeutic agents.


Sign in / Sign up

Export Citation Format

Share Document