Multiple mechanisms of secondary hyperalgesia

Author(s):  
Rolf-Detlef Treede ◽  
Walter Magerl
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Marie Udnesseter Lie ◽  
Bendik Winsvold ◽  
Johannes Gjerstad ◽  
Dagfinn Matre ◽  
Linda M. Pedersen ◽  
...  

AbstractObjectivesThe underlying mechanisms for individual differences in experimental pain are not fully understood, but genetic susceptibility is hypothesized to explain some of these differences. In the present study we focus on three genetic variants important for modulating experimental pain related to serotonin (SLC6A4 5-HTTLPR/rs25531 A>G), catecholamine (COMT rs4680 Val158Met) and opioid (OPRM1 rs1799971 A118G) signaling. We aimed to investigate associations between each of the selected genetic variants and individual differences in experimental pain.MethodsIn total 356 subjects (232 low back pain patients and 124 healthy volunteers) were genotyped and assessed with tests of heat pain threshold, pressure pain thresholds, heat pain tolerance, conditioned pain modulation (CPM), offset analgesia, temporal summation and secondary hyperalgesia. Low back pain patients and healthy volunteers did not differ in regards to experimental test results or allelic frequencies, and were therefore analyzed as one group. The associations were tested using analysis of variance and the Kruskal-Wallis test.ResultsNo significant associations were observed between the genetic variants (SLC6A4 5-HTTLPR/rs25531 A>G, COMT rs4680 Val158Met and OPRM1 rs1799971 A118G) and individual differences in experimental pain (heat pain threshold, pressure pain threshold, heat pain tolerance, CPM, offset analgesia, temporal summation and secondary hyperalgesia).ConclusionsThe selected pain-associated genetic variants were not associated with individual differences in experimental pain. Genetic variants well known for playing central roles in pain perception failed to explain individual differences in experimental pain in 356 subjects. The finding is an important contribution to the literature, which often consists of studies with lower sample size and one or few experimental pain assessments.


2017 ◽  
Vol 57 (1) ◽  
pp. 37-44
Author(s):  
Vanessa Martins Pereira Silva Moreira ◽  
Saulo Delfino Barboza ◽  
Juliana Borges Oliveira ◽  
Janser Moura Pereira ◽  
Valdeci Carlos Dionisio

2015 ◽  
Vol 114 (5) ◽  
pp. 2672-2681 ◽  
Author(s):  
Emanuel N. van den Broeke ◽  
André Mouraux ◽  
Antonia H. Groneberg ◽  
Doreen B. Pfau ◽  
Rolf-Detlef Treede ◽  
...  

Secondary hyperalgesia is believed to be a key feature of “central sensitization” and is characterized by enhanced pain to mechanical nociceptive stimuli. The aim of the present study was to characterize, using EEG, the effects of pinprick stimulation intensity on the magnitude of pinprick-elicited brain potentials [event-related potentials (ERPs)] before and after secondary hyperalgesia induced by intradermal capsaicin in humans. Pinprick-elicited ERPs and pinprick-evoked pain ratings were recorded in 19 healthy volunteers, with mechanical pinprick stimuli of varying intensities (0.25-mm probe applied with a force extending between 16 and 512 mN). The recordings were performed before (T0) and 30 min after (T1) intradermal capsaicin injection. The contralateral noninjected arm served as control. ERPs elicited by stimulation of untreated skin were characterized by 1) an early-latency negative-positive complex peaking between 120 and 250 ms after stimulus onset (N120-P240) and maximal at the vertex and 2) a long-lasting positive wave peaking 400–600 ms after stimulus onset and maximal more posterior (P500), which was correlated to perceived pinprick pain. After capsaicin injection, pinprick stimuli were perceived as more intense in the area of secondary hyperalgesia and this effect was stronger for lower compared with higher stimulus intensities. In addition, there was an enhancement of the P500 elicited by stimuli of intermediate intensity, which was significant for 64 mN. The other components of the ERPs were unaffected by capsaicin. Our results suggest that the increase in P500 magnitude after capsaicin is mediated by facilitated mechanical nociceptive pathways.


2008 ◽  
Vol 109 (1) ◽  
pp. 101-110 ◽  
Author(s):  
Birgit Kraft ◽  
Nathalie A. Frickey ◽  
Rainer M. Kaufmann ◽  
Marcus Reif ◽  
Richard Frey ◽  
...  

Background Cannabinoid-induced analgesia was shown in animal studies of acute inflammatory and neuropathic pain. In humans, controlled clinical trials with Delta-tetrahydrocannabinol or other cannabinoids demonstrated analgesic efficacy in chronic pain syndromes, whereas the data in acute pain were less conclusive. Therefore, the aim of this study was to investigate the effects of oral cannabis extract in two different human models of acute inflammatory pain and hyperalgesia. Methods The authors conducted a double-blind, crossover study in 18 healthy female volunteers. Capsules containing Delta-tetrahydrocannabinol-standardized cannabis extract or active placebo were orally administered. A circular sunburn spot was induced at one upper leg. Heat and electrical pain thresholds were determined at the erythema, the area of secondary hyperalgesia, and the contralateral leg. Intradermal capsaicin-evoked pain and areas of flare and secondary hyperalgesia were measured. Primary outcome parameters were heat pain thresholds in the sunburn erythema and the capsaicin-evoked area of secondary hyperalgesia. Secondary measures were electrical pain thresholds, sunburn-induced secondary hyperalgesia, and capsaicin-induced pain. Results Cannabis extract did not affect heat pain thresholds in the sunburn model. Electrical thresholds (250 Hz) were significantly lower compared with baseline and placebo. In the capsaicin model, the area of secondary hyperalgesia, flare, and spontaneous pain were not altered. Conclusion To conclude, no analgesic or antihyperalgesic activity of cannabis extract was found in the experiments. Moreover, the results even point to the development of a hyperalgesic state under cannabinoids. Together with previous data, the current results suggest that cannabinoids are not effective analgesics for the treatment of acute nociceptive pain in humans.


Sign in / Sign up

Export Citation Format

Share Document