Chapter 9 Novel ligands for P2 receptor subtypes in innervated tissues

Author(s):  
Günter Lambrecht ◽  
Susanne Damer ◽  
Beate Niebel ◽  
Sittah Czeche ◽  
Peter Nickel ◽  
...  
1998 ◽  
Vol 336 (3) ◽  
pp. 513-523 ◽  
Author(s):  
Satya P. KUNAPULI ◽  
James L. DANIEL

Extracellular nucleotides have been implicated in a number of physiological functions. Nucleotides act on cell-surface receptors known as P2 receptors, of which several subtypes have been cloned. Both ATP and ADP are stored in platelets and are released upon platelet activation. Furthermore, nucleotides are also released from damaged or broken cells. Thus during vascular injury nucleotides play an important role in haemostasis through activation of platelets, modulation of vascular tone, recruitment of neutrophils and monocytes to the site of injury, and facilitation of adhesion of leucocytes to the endothelium. Nucleotides also moderate these functions by generating nitric oxide and prostaglandin I2 through activation of endothelial cells, and by activating different receptor subtypes on vascular smooth muscle cells. In the heart, P2 receptors regulate contractility through modulation of L-type Ca2+ channels, although the molecular mechanisms involved are still under investigation. Classical pharmacological studies have identified several P2 receptor subtypes in the cardiovascular system. Molecular pharmacological studies have clarified the nature of some of these receptors, but have complicated the picture with others. In platelets, the classical P2T receptor has now been resolved into three P2 receptor subtypes: the P2Y1, P2X1 and P2TAC receptors (the last of these, which is coupled to the inhibition of adenylate cyclase, is yet to be cloned). In peripheral blood leucocytes, endothelial cells, vascular smooth muscle cells and cardiomyocytes, the effects of classical P2X, P2Y and P2U receptors have been found to be mediated by more than one P2 receptor subtype. However, the exact functions of these multiple receptor subtypes remain to be understood, as P2-receptor-selective agonists and antagonists are still under development.


2008 ◽  
Vol 294 (1) ◽  
pp. F10-F27 ◽  
Author(s):  
Volker Vallon

Extracellular nucleotides (e.g., ATP) regulate physiological and pathophysiological processes through activation of nucleotide P2 receptors in the plasma membrane. Examples include such diverse processes as communication from taste buds to gustatory nerves, platelet aggregation, nociception, or neutrophil chemotaxis. Over approximately the last 15 years, evidence has also accumulated that cells in renal epithelia release nucleotides in response to physiological stimuli and that these nucleotides act in a paracrine and autocrine way to activate P2 receptors and play a significant role in the regulation of transport mechanisms and cell volume regulation. This review discusses potential stimuli and mechanisms involved in nucleotide release in renal epithelia and summarizes the available data on the expression and function of nucleotide P2 receptors along the native mammalian tubular and collecting duct system. Using established agonist profiles for P2 receptor subtypes, significant insights have been gained particularly into a potential role for P2Y2-like receptors in the regulation of transport mechanisms in the collecting duct. Due to the lack of receptor subtype-specific antagonists, however, the in vivo relevance of P2 receptor subtypes is unclear. Studies in gene knockout mice provided first insights including an antihypertensive activity of P2Y2receptors that is linked to an inhibitory influence on renal Na+and water reabsorption. We are only beginning to unravel the important roles of extracellular nucleotides and P2 receptors in the regulation of the diverse transport mechanisms of the kidney.


1998 ◽  
Vol 357 (2) ◽  
pp. 111-120 ◽  
Author(s):  
Florin Tuluc ◽  
R. Bültmann ◽  
Markus Glänzel ◽  
August Wilhelm Frahm ◽  
Klaus Starke

1999 ◽  
Vol 10 (2) ◽  
pp. 210-224 ◽  
Author(s):  
J.T. Turner ◽  
L.A. landon ◽  
S.J. Gibbons ◽  
B.R. Talamo

The effects of ATP on salivary glands have been recognized since 1982. Functional and pharmacological studies of the P2 nucleotide receptors that mediate the effects of ATP and other extracellular nucleotides have been supported by the cloning of receptor cDNAs, by the expression of the receptor proteins, and by the identification in salivary gland cells of multiple P2 receptor subtypes. Currently, there is evidence obtained from pharmacological and molecular biology approaches for the expression in salivary gland of two P2X ligand-gated ion channels, P2Z/P2X7 and P2X4, and two P2Y G protein-coupled receptors, P2Y1 and P2Y2. Activation of each of these receptor subtypes increases intracellular Ca2+, a second messenger with a key role in the regulation of salivary gland secretion. Through Ca2+ regulation and other mechanisms, P2 receptors appear to regulate salivary cell volume, ion and protein secretion, and increased permeability to small molecules that may be involved in cytotoxicity. Some localization of the various salivary P2 receptor subtypes to specific cells and membrane subdomains has been reported, along with evidence for the co-expression of multiple P2 receptor subtypes within specific salivary acinar or duct cells. However, additional studies in vivo and with intact organ preparations are required to define clearly the roles the various P2 receptor subtypes play in salivary gland physiology and pathology. Opportunities for eventual utilization of these receptors as pharmacotherapeutic targets in diseases involving salivary gland dysfunction appear promising.


2004 ◽  
Vol 286 (4) ◽  
pp. H1546-H1551 ◽  
Author(s):  
Yasushi Miyagi ◽  
John H. Zhang

Interactions between different selective P2 receptor agonists have been used as tools to identify different P2 receptor subtypes. In the present study, we examined the P2 receptor subtypes and the mechanisms of potentiation of UTP contraction (P2Y contraction) by α,β-methylene ATP [(2-carboxypiperazin-4-yl)propyl-1-phosphanoic acid (CPP), a P2X agonist] using isometric tension in the denuded rabbit basilar artery. We made the following observations: 1) a predominant P2X receptor contraction was observed in the rabbit ear artery by the rank order of CPP » 2-methylthioATP > ATP > UTP; 2) functional P2Y receptors were observed in the rabbit basilar artery by the rank order of UTP » ATP = CPP = 2-methylthioATP; 3) CPP potentiated UTP-, ATP-, and ATPγS-induced contractions, possibly by activation of P2Y4 receptors because ATPγS does not activate P2Y6 receptors; and 4) ectonucleotidase did not play a predominant role in the potentiative effect of CPP because Evans blue, Ca2+-free medium, or divalent cation Ni2+ did not affect the effect of CPP. Evans blue potentiated the contraction by UTP but not by ATP or ATPγS. We conclude that CPP enhanced P2Y4-mediated contraction in the rabbit basilar artery, and the influence by ectonucleotidases on CPP-potentiation remains unclear.


2011 ◽  
Vol 7 (1) ◽  
pp. 99-108 ◽  
Author(s):  
Tuan Trang ◽  
Simon Beggs ◽  
Michael W. Salter

One of the most significant advances in pain research is the realization that neurons are not the only cell type involved in the etiology of chronic pain. This realization has caused a radical shift from the previous dogma that neuronal dysfunction alone accounts for pain pathologies to the current framework of thinking that takes into account all cell types within the central nervous system (CNS). This shift in thinking stems from growing evidence that glia can modulate the function and directly shape the cellular architecture of nociceptive networks in the CNS. Microglia, in particular, are increasingly recognized as active principal players that respond to changes in physiological homeostasis by extending their processes toward the site of neural damage, and by releasing specific factors that have profound consequences on neuronal function and that contribute to CNS pathologies caused by disease or injury. A key molecule that modulates microglia activity is ATP, an endogenous ligand of the P2 receptor family. Microglia expresses several P2 receptor subtypes, and of these the P2X4 receptor subtype has emerged as a core microglia–neuron signaling pathway: activation of this receptor drives the release of brain-derived neurotrophic factor (BDNF), a cellular substrate that causes disinhibition of pain-transmitting spinal lamina I neurons. Converging evidence points to BDNF from spinal microglia as being a critical microglia–neuron signaling molecule that gates aberrant nociceptive processing in the spinal cord. The present review highlights recent advances in our understanding of P2X4 receptor-mediated signaling and regulation of BDNF in microglia, as well as the implications for microglia–neuron interactions in the pathobiology of neuropathic pain.


Sign in / Sign up

Export Citation Format

Share Document