Uracil-initiated base excision DNA repair synthesis fidelity in human colon adenocarcinoma loVo and Escherichia coli cell extracts

Author(s):  
Russell J Sanderson ◽  
Samuel E Bennett ◽  
Jung-Suk Sung ◽  
Dale W Mosbaugh
1989 ◽  
Vol 264 (36) ◽  
pp. 21788-21792
Author(s):  
J Hansson ◽  
M Munn ◽  
W D Rupp ◽  
R Kahn ◽  
R D Wood

Author(s):  
Noha Elsakrmy ◽  
Qiu-Mei Zhang-Akiyama ◽  
Dindial Ramotar

Exogenous and endogenous damage to the DNA is inevitable. Several DNA repair pathways including base excision, nucleotide excision, mismatch, homologous and non-homologous recombinations are conserved across all organisms to faithfully maintain the integrity of the genome. The base excision repair (BER) pathway functions to repair single-base DNA lesions and during the process creates the premutagenic apurinic/apyrimidinic (AP) sites. In this review, we discuss the components of the BER pathway in the nematode Caenorhabditis elegans and delineate the different phenotypes caused by the deletion or the knockdown of the respective DNA repair gene, as well as the implications. To date, two DNA glycosylases have been identified in C. elegans, the monofunctional uracil DNA glycosylase-1 (UNG-1) and the bifunctional endonuclease III-1 (NTH-1) with associated AP lyase activity. In addition, the animal possesses two AP endonucleases belonging to the exonuclease-3 and endonuclease IV families and in C. elegans these enzymes are called EXO-3 and APN-1, respectively. In mammalian cells, the DNA polymerase, Pol beta, that is required to reinsert the correct bases for DNA repair synthesis is not found in the genome of C. elegans and the evidence indicates that this role could be substituted by DNA polymerase theta (POLQ), which is known to perform a function in the microhomology-mediated end-joining pathway in human cells. The phenotypes observed by the C. elegans mutant strains of the BER pathway raised many challenging questions including the possibility that the DNA glycosylases may have broader functional roles, as discuss in this review.


1993 ◽  
Vol 13 (2) ◽  
pp. 1051-1058 ◽  
Author(s):  
Z Wang ◽  
X Wu ◽  
E C Friedberg

Base excision repair is an important mechanism for correcting DNA damage produced by many physical and chemical agents. We have examined the effects of the REV3 gene and the DNA polymerase genes POL1, POL2, and POL3 of Saccharomyces cerevisiae on DNA repair synthesis is nuclear extracts. Deletional inactivation of REV3 did not affect repair synthesis in the base excision repair pathway. Repair synthesis in nuclear extracts of pol1, pol2, and pol3 temperature-sensitive mutants was normal at permissive temperatures. However, repair synthesis in pol2 nuclear extracts was defective at the restrictive temperature of 37 degrees C and could be complemented by the addition of purified yeast DNA polymerase epsilon. Repair synthesis in pol1 nuclear extracts was proficient at the restrictive temperature unless DNA polymerase alpha was inactivated prior to the initiation of DNA repair. Thermal inactivation of DNA polymerase delta in pol3 nuclear extracts enhanced DNA repair synthesis approximately 2-fold, an effect which could be specifically reversed by the addition of purified yeast DNA polymerase delta to the extract. These results demonstrate that DNA repair synthesis in the yeast base excision repair pathway is catalyzed by DNA polymerase epsilon but is apparently modulated by the presence of DNA polymerases alpha and delta.


EMBO Reports ◽  
2003 ◽  
Vol 4 (4) ◽  
pp. 363-367 ◽  
Author(s):  
Ulrike Sattler ◽  
Philippe Frit ◽  
Bernard Salles ◽  
Patrick Calsou

Sign in / Sign up

Export Citation Format

Share Document