base excision dna repair
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 13)

H-INDEX

26
(FIVE YEARS 3)

2021 ◽  
Vol 22 (9) ◽  
pp. 4679
Author(s):  
Inna Vasil’eva ◽  
Nina Moor ◽  
Rashid Anarbaev ◽  
Mikhail Kutuzov ◽  
Olga Lavrik

Poly(ADP-ribose) polymerase 2 (PARP2) participates in base excision repair (BER) alongside PARP1, but its functions are still under study. Here, we characterize binding affinities of PARP2 for other BER proteins (PARP1, APE1, Polβ, and XRCC1) and oligomerization states of the homo- and hetero-associated complexes using fluorescence-based and light scattering techniques. To compare PARP2 and PARP1 in the efficiency of PAR synthesis, in the absence and presence of protein partners, the size of PARP2 PARylated in various reaction conditions was measured. Unlike PARP1, PARP2 forms more dynamic complexes with common protein partners, and their stability is effectively modulated by DNA intermediates. Apparent binding affinity constants determined for homo- and hetero-oligomerized PARP1 and PARP2 provide evidence that the major form of PARP2 at excessive PARP1 level is their heterocomplex. Autoregulation of PAR elongation at high PARP and NAD+ concentrations is stronger for PARP2 than for PARP1, and the activity of PARP2 is more effectively inhibited by XRCC1. Moreover, the activity of both PARP1 and PARP2 is suppressed upon their heteroPARylation. Taken together, our findings suggest that PARP2 can function differently in BER, promoting XRCC1-dependent repair (similarly to PARP1) or an alternative XRCC1-independent mechanism via hetero-oligomerization with PARP1.


2020 ◽  
Vol 21 (9) ◽  
pp. 3122
Author(s):  
Nina Moor ◽  
Inna Vasil’eva ◽  
Olga Lavrik

Human apurinic/apyrimidinic endonuclease 1 (APE1) has multiple functions in base excision DNA repair (BER) and other cellular processes. Its eukaryote-specific N-terminal extension plays diverse regulatory roles in interaction with different partners. Here, we explored its involvement in interaction with canonical BER proteins. Using fluorescence based-techniques, we compared binding affinities of the full-length and N-terminally truncated forms of APE1 (APE1NΔ35 and APE1NΔ61) for functionally and structurally different DNA polymerase β (Polβ), X-ray repair cross-complementing protein 1 (XRCC1), and poly(adenosine diphosphate (ADP)-ribose) polymerase 1 (PARP1), in the absence and presence of model DNA intermediates. Influence of the N-terminal truncation on binding the AP site-containing DNA was additionally explored. These data suggest that the interaction domain for proteins is basically formed by the conserved catalytic core of APE1. The N-terminal extension being capable of dynamically interacting with the protein and DNA partners is mostly responsible for DNA-dependent modulation of protein–protein interactions. Polβ, XRCC1, and PARP1 were shown to more efficiently regulate the endonuclease activity of the full-length protein than that of APE1NΔ61, further suggesting contribution of the N-terminal extension to BER coordination. Our results advance the understanding of functional roles of eukaryote-specific protein extensions in highly coordinated BER processes.


DNA Repair ◽  
2020 ◽  
Vol 86 ◽  
pp. 102767 ◽  
Author(s):  
Alexandra M. Gehring ◽  
Kelly M. Zatopek ◽  
Brett W. Burkhart ◽  
Vladimir Potapov ◽  
Thomas J. Santangelo ◽  
...  

2019 ◽  
Vol 88 (1) ◽  
pp. 137-162 ◽  
Author(s):  
William A. Beard ◽  
Julie K. Horton ◽  
Rajendra Prasad ◽  
Samuel H. Wilson

Genomic DNA is susceptible to endogenous and environmental stresses that modify DNA structure and its coding potential. Correspondingly, cells have evolved intricate DNA repair systems to deter changes to their genetic material. Base excision DNA repair involves a number of enzymes and protein cofactors that hasten repair of damaged DNA bases. Recent advances have identified macromolecular complexes that assemble at the DNA lesion and mediate repair. The repair of base lesions generally requires five enzymatic activities: glycosylase, endonuclease, lyase, polymerase, and ligase. The protein cofactors and mechanisms for coordinating the sequential enzymatic steps of repair are being revealed through a range of experimental approaches. We discuss the enzymes and protein cofactors involved in eukaryotic base excision repair, emphasizing the challenge of integrating findings from multiple methodologies. The results provide an opportunity to assimilate biochemical findings with cell-based assays to uncover new insights into this deceptively complex repair pathway.


2019 ◽  
Vol 25 (3) ◽  
pp. 298-312 ◽  
Author(s):  
Daria V. Kim ◽  
Alena V. Makarova ◽  
Regina R. Miftakhova ◽  
Dmitry O. Zharkov

Base excision DNA repair (BER) is a vitally important pathway that protects the cell genome from many kinds of DNA damage, including oxidation, deamination, and hydrolysis. It involves several tightly coordinated steps, starting from damaged base excision and followed by nicking one DNA strand, incorporating an undamaged nucleotide, and DNA ligation. Deficiencies in BER are often embryonic lethal or cause morbid diseases such as cancer, neurodegeneration, or severe immune pathologies. Starting from the early 1980s, when the first mammalian cell lines lacking BER were produced by spontaneous mutagenesis, such lines have become a treasure trove of valuable information about the mechanisms of BER, often revealing unexpected connections with other cellular processes, such as antibody maturation or epigenetic demethylation. In addition, these cell lines have found an increasing use in genotoxicity testing, where they provide increased sensitivity and representativity to cell-based assay panels. In this review, we outline current knowledge about BER-deficient cell lines and their use.


Sign in / Sign up

Export Citation Format

Share Document