Conformation and packing of various crystalline cellulose fibers

2001 ◽  
Vol 26 (9) ◽  
pp. 1341-1417 ◽  
Author(s):  
Peter Zugenmaier
Author(s):  
Andi Arjuna ◽  
Selva Natsir ◽  
Andi Amelia Khumaerah ◽  
Risfah Yulianty

As one of vegetable plants in South Sulawesi, cabbage (Brassica oleracea L.) crops has generated cellulose fibers biomass which is potentially modified into nano-crystalline cellulose, a valuable material in the pharmaceutical formula. Therefore, this study aims to manipulate the natural cellulose fibers of cabbage biomass through acid hydrolysis method within product preliminary evaluation through FT-IR and XRD. The fibers were modified through the bleaching process produce micro crystalline cellulose, which was then hydrolyzed with 65% sulfuric acid to obtain nanocrystalline cellulose. The products have yellow pale to brown colour, with a yield of 10.06% and 31.16% respectively. Based on FT-IR spectra, both products inherit cellulose characteristics, C-O (1232.16 cm-1); C = O (1743.65 cm-1); -OH (1625.99 cm-1); C-H (2920.23 cm-1); O-H (3414 cm-1). The increasing trend of crystallinity index during the process was also observed in XRD diffractogram. It is identifiable from 7.41% for natural fiber, 69.68% for crystalline microcrystalline, and 78.01% for nano crystalline cellulose. Through Match®, the estimated crystalline product size reaches 58.91 nm.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yunjun Zhao ◽  
Xiao-Hong Yu ◽  
Chang-Jun Liu

Lignin in Populus species is acylated with p-hydroxybenzoate. Monolignol p-hydroxybenzoyltransferase 1 (PHBMT1) mediates p-hydroxybenzoylation of sinapyl alcohol, eventually leading to the modification of syringyl lignin subunits. Angiosperm trees upon gravistimulation undergo the re-orientation of their growth along with the production of specialized secondary xylem, i.e., tension wood (TW), that generates tensile force to pull the inclined stem or leaning branch upward. Sporadic evidence suggests that angiosperm TW contains relatively a high percentage of syringyl lignin and lignin-bound p-hydroxybenzoate. However, whether such lignin modification plays a role in gravitropic response remains unclear. By imposing mechanical bending and/or gravitropic stimuli to the hybrid aspens in the wild type (WT), lignin p-hydroxybenzoate deficient, and p-hydroxybenzoate overproduction plants, we examined the responses of plants to gravitropic/mechanical stress and their cell wall composition changes. We revealed that mechanical bending or gravitropic stimulation not only induced the overproduction of crystalline cellulose fibers and increased the relative abundance of syringyl lignin, but also significantly induced the expression of PHBMT1 and the increased accumulation of p-hydroxybenzoates in TW. Furthermore, we found that although disturbing lignin-bound p-hydroxybenzoate accumulation in the PHBMT1 knockout and overexpression (OE) poplars did not affect the major chemical composition shifts of the cell walls in their TW as occurred in the WT plants, depletion of p-hydroxybenzoates intensified the gravitropic curving of the plantlets in response to gravistimulation, evident with the enhanced stem secant bending angle. By contrast, hyperaccumulation of p-hydroxybenzoates mitigated gravitropic response. These data suggest that PHBMT1-mediated lignin modification is involved in the regulation of poplar gravitropic response and, likely by compromising gravitropism and/or enhancing autotropism, negatively coordinates the action of TW cellulose fibers to control the poplar wood deformation and plant growth.


Langmuir ◽  
2013 ◽  
Vol 29 (48) ◽  
pp. 14997-15005 ◽  
Author(s):  
Jingpeng Wang ◽  
Amanda Quirk ◽  
Jacek Lipkowski ◽  
John R. Dutcher ◽  
Anthony J. Clarke

1987 ◽  
Vol 33 (3) ◽  
pp. 267-272 ◽  
Author(s):  
H. Kudo ◽  
K.-J. Cheng ◽  
J. W. Costerton

The presence of methylellulose prevents the attachment of cellulolytic rumen bacteria to cellulose fibers. The addition of methylcellulose to pure cultures of these organisms in which the cells are already adherent to cellulose causes their detachment from this insoluble substrate and the inhibition of their growth. Methylcellulose is not used as a carbon source by these organisms and has no effect on their growth when glucose and cellobiose are the carbon sources. Attached cells of Bacteroides succinogenes orient themselves in the plane of the individual cellulose fibers and their methylcellulose-induced detachment, which is complete (almost 100%), leaves grooves where the cellulose has been digested. Attached cells of Ruminococcus albus colonize the cellulose in a looser and less regular pattern and their almost complete methylcellulose-induced detachment leaves less regular pits in the cellulose surface. On the other hand, attached cells of Ruminococcus flavefaciens colonize the cellulose surface in a random orientation by means of a discernible exopolysaccharide network, and their less complete methylcellulose-induced detachment leaves no residual impressions on the cellulose surface. These data support the suggestion that bacterial attachment is necessary for the digestion of highly ordered crystalline cellulose, and that cellulolytic species differ in the nature of their attachment to this insoluble substrate and in the nature of their enzymatic attack. Methylcellulose is an effective agent for detaching major rumen cellulolytic bacteria from their cellulosic substrate.


Author(s):  
S. E. Keckler ◽  
D. M. Dabbs ◽  
N. Yao ◽  
I. A. Aksay

Cellular organic structures such as wood can be used as scaffolds for the synthesis of complex structures of organic/ceramic nanocomposites. The wood cell is a fiber-reinforced resin composite of cellulose fibers in a lignin matrix. A single cell wall, containing several layers of different fiber orientations and lignin content, is separated from its neighboring wall by the middle lamella, a lignin-rich region. In order to achieve total mineralization, deposition on and in the cell wall must be achieved. Geological fossilization of wood occurs as permineralization (filling the void spaces with mineral) and petrifaction (mineralizing the cell wall as the organic component decays) through infiltration of wood with inorganics after growth. Conversely, living plants can incorporate inorganics into their cells and in some cases into the cell walls during growth. In a recent study, we mimicked geological fossilization by infiltrating inorganic precursors into wood cells in order to enhance the properties of wood. In the current work, we use electron microscopy to examine the structure of silica formed in the cell walls after infiltration of tetraethoxysilane (TEOS).


2019 ◽  
Vol 139 (2) ◽  
pp. 130-135
Author(s):  
Masanobu Yoshida ◽  
Yoshinori Konishi ◽  
Masamichi Kato

Sign in / Sign up

Export Citation Format

Share Document