Three-dimensional modeling with Monte Carlo-probability density function methods and laser diagnostics of the combustion in a two-stroke engine

2000 ◽  
Vol 28 (1) ◽  
pp. 1153-1159 ◽  
Author(s):  
C. Taut ◽  
C. Correa ◽  
O. Deutschmann ◽  
J. Warnatz ◽  
S. Einecke ◽  
...  
2021 ◽  
Vol 5 (4) ◽  
pp. 53-60
Author(s):  
Daniel Gurgul ◽  
Andriy Burbelko ◽  
Tomasz Wiktor

This paper presents a new proposition on how to derive mathematical formulas that describe an unknown Probability Density Function (PDF3) of the spherical radii (r3) of particles randomly placed in non-transparent materials. We have presented two attempts here, both of which are based on data collected from a random planar cross-section passed through space containing three-dimensional nodules. The first attempt uses a Probability Density Function (PDF2) the form of which is experimentally obtained on the basis of a set containing two-dimensional radii (r2). These radii are produced by an intersection of the space by a random plane. In turn, the second solution also uses an experimentally obtained Probability Density Function (PDF1). But the form of PDF1 has been created on the basis of a set containing chord lengths collected from a cross-section.The most important finding presented in this paper is the conclusion that if the PDF1 has proportional scopes, the PDF3 must have a constant value in these scopes. This fact allows stating that there are no nodules in the sample space that have particular radii belonging to the proportional ranges the PDF1.


2012 ◽  
Vol 57 (21) ◽  
pp. 6827-6848 ◽  
Author(s):  
Rutao Yao ◽  
Ranjith M Ramachandra ◽  
Neeraj Mahajan ◽  
Vinay Rathod ◽  
Noel Gunasekar ◽  
...  

1997 ◽  
Vol 13 (2) ◽  
pp. 218-225 ◽  
Author(s):  
Anil K. Tolpadi ◽  
Sanjay M. Correa ◽  
David L. Burrus ◽  
Hukam C. Mongia

2000 ◽  
Vol 1 (2) ◽  
pp. 171-190 ◽  
Author(s):  
S Subramaniam ◽  
D. C. Haworth

A hybrid Lagrangian-Eulerian methodology is developed for numerical simulation of turbulent mixing and combustion in arbitrary three-dimensional time-dependent geometric configurations. The context is a probability density function (PDF) based approach intended for modelling in cylinder processes in reciprocating piston internal combustion (IC) engines. Issues addressed include mean estimation, particle tracking and particle number-density control on three-dimensional unstructured deforming meshes. The suitability of the methodology for statistically time-dependent three-dimensional turbulent flow with large density variations is demonstrated via simulations of turbulent freon vapour/air mixing on an unstructured deforming mesh representing an idealized IC engine [13]. Computed profiles of mean and r.m.s. freon mole fractions show good quantitative agreement with measurements. Moreover, inherent advantages of the Lagrangian-Eulerian PDF approach are demonstrated, compared to Eulerian finite volume solutions of an (approximately) equivalent set of moment equations. The new approach is, by design, compatible with existing computational fluid dynamics codes that are used for multidimensional modelling of in-cylinder thermal fluids processes. This work broadens the accessibility of PDF methods for practical turbulent combustion systems.


Robotics ◽  
2013 ◽  
pp. 366-374
Author(s):  
Amina Waqar

Sensor-based localization has been found to be one of the most preliminary issues in the world of Mobile/Wireless Robotics. One can easily track a mobile robot using a Kalman Filter, which uses a Phase Locked Loop for tracing via averaging the values. Tracking has now become very easy, but one wants to proceed to navigation. The reason behind this is that tracking does not help one determine where one is going. One would like to use a more precise “Navigation” like Monte Carlo Localization. It is a more efficient and precise way than a feedback loop because the feedback loops are more sensitive to noise, making one modify the external loop filter according to the variation in the processing. In this case, the robot updates its belief in the form of a probability density function (pdf). The supposition is considered to be one meter square. This probability density function expands over the entire supposition. A door in a wall can be identified as peak/rise in the probability function or the belief of the robot. The mobile updates a window of 1 meter square (area depends on the sensors) as its belief. One starts with a uniform probability density function, and then the sensors update it. The authors use Monte Carlo Localization for updating the belief, which is an efficient method and requires less space. It is an efficient method because it can be applied to continuous data input, unlike the feedback loop. It requires less space. The robot does not need to store the map and, hence, can delete the previous belief without any hesitation.


2019 ◽  
Author(s):  
Αριστοτέλης-Νικόλαος Ραψομανίκης

Η ανατομική πληροφορία στις καθιερωμένες συνδυαστικές μοριακές απεικονίσεις γίνεται συνήθως με ιοντίζουσες ακτινοβολίες (ακτίνες-Χ, SPECT/CT, PET/CT), οι οποίες επιβαρύνουν κατά κανόνα τον ασθενή με επιπρόσθετη ακτινοβόληση. Η σύγχρονη έρευνα εστιάζεται στη χρήση οπτικών μεθόδων για την υλοποίηση της ζητούμενης μορφολογικής εικόνας, όπου σκεδαζόμενο φως από την υπό εξέταση περιοχή ανακατασκευάζεται κατάλληλα για να αποδώσει τη ζητούμενη ανατομική πληροφορία. Σκοπός της Διδακτορικής αυτής Διατριβής είναι η μελέτη μιας καινοτόμου μεθόδου οπτικής απεικόνισης, όπου, παρά την υψηλή σκεδαστικότητα του μέσου, η χρονικά αξιοποιημένη λαμβανόμενη πληροφορία να δύναται να χρησιμοποιηθεί επιτυχώς για την μορφολογική ανασύσταση του σκεδαζόμενου μέσου σε τομογραφικό επίπεδο. Απώτερος στόχος της μελέτης αυτής είναι η ανάπτυξη ενός υβριδικού τομογραφικού συστήματος αποτελούμενου από μία γ-Camera (SPECT) και ενός συστήματος τηλεκεντρικού φωτισμού με υπέρυθρη παλμική ακτινοβολία και σύστημα οπτικής ανάλυσης με χρονική πληροφορία (Time Resolved Optical Tomography - TROT). Βασικός αρωγός στην κατανόηση των φυσικών διεργασιών στο στάδιο αυτό, πέραν του πειραματικού ελέγχου της εφαρμοσιμότητας συμβατικών μαθηματικών αλγορίθμων για την ανακατασκευή της τομογραφικής εικόνας με υπέρυθρη και οπτική ακτινοβολία, αποτέλεσε η ανάπτυξη ενός εκτεταμένου εργαλείου προσομοίωσης με τεχνικές Monte-Carlo, το οποίο, πέραν από τη λεπτομερή παρακολούθηση της τροχιάς ενός φωτονίου (ray-tracing) σε ισχυρά σκεδαστικό μέσο, καινοτομεί σε δύο βασικά σημεία: Εισάγει με στοχαστικό τρόπο, υπό τη μορφή συνάρτησης πυκνότητας πιθανότητας (probability density function), την μακροσκοπική προσομοίωση της κυριαρχούσης στο μέσο σκέδασης Mie, αποφεύγοντας τοιουτοτρόπως μεγάλους υπολογιστικούς χρόνους. Παράλληλα, υπολογίζει το χρόνο πτήσης (Time-of-Flight) για κάθε προσομοιούμενο φωτόνιο, παρακολουθώντας όλες τις γνωστές φυσικές αλληλεπιδράσεις στις οποίες αυτό υπεισέρχεται. Το λογισμικό αυτό (PhoSim) με την μορφή ενός ολοκληρωμένου πακέτου εφαρμογής αποτελεί τον πυρήνα της μελέτης του εξεταζόμενου θέματος στην Διδακτορική αυτή Διατριβή.


Sign in / Sign up

Export Citation Format

Share Document