scholarly journals Derivation of Equations for a Size Distribution of Spherical Particles in Non-Transparent Materials

2021 ◽  
Vol 5 (4) ◽  
pp. 53-60
Author(s):  
Daniel Gurgul ◽  
Andriy Burbelko ◽  
Tomasz Wiktor

This paper presents a new proposition on how to derive mathematical formulas that describe an unknown Probability Density Function (PDF3) of the spherical radii (r3) of particles randomly placed in non-transparent materials. We have presented two attempts here, both of which are based on data collected from a random planar cross-section passed through space containing three-dimensional nodules. The first attempt uses a Probability Density Function (PDF2) the form of which is experimentally obtained on the basis of a set containing two-dimensional radii (r2). These radii are produced by an intersection of the space by a random plane. In turn, the second solution also uses an experimentally obtained Probability Density Function (PDF1). But the form of PDF1 has been created on the basis of a set containing chord lengths collected from a cross-section.The most important finding presented in this paper is the conclusion that if the PDF1 has proportional scopes, the PDF3 must have a constant value in these scopes. This fact allows stating that there are no nodules in the sample space that have particular radii belonging to the proportional ranges the PDF1.

2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Emrah Dokur ◽  
Salim Ceyhan ◽  
Mehmet Kurban

To construct the geometry in nonflat spaces in order to understand nature has great importance in terms of applied science. Finsler geometry allows accurate modeling and describing ability for asymmetric structures in this application area. In this paper, two-dimensional Finsler space metric function is obtained for Weibull distribution which is used in many applications in this area such as wind speed modeling. The metric definition for two-parameter Weibull probability density function which has shape (k) and scale (c) parameters in two-dimensional Finsler space is realized using a different approach by Finsler geometry. In addition, new probability and cumulative probability density functions based on Finsler geometry are proposed which can be used in many real world applications. For future studies, it is aimed at proposing more accurate models by using this novel approach than the models which have two-parameter Weibull probability density function, especially used for determination of wind energy potential of a region.


2012 ◽  
Vol 57 (21) ◽  
pp. 6827-6848 ◽  
Author(s):  
Rutao Yao ◽  
Ranjith M Ramachandra ◽  
Neeraj Mahajan ◽  
Vinay Rathod ◽  
Noel Gunasekar ◽  
...  

2000 ◽  
Vol 1 (2) ◽  
pp. 171-190 ◽  
Author(s):  
S Subramaniam ◽  
D. C. Haworth

A hybrid Lagrangian-Eulerian methodology is developed for numerical simulation of turbulent mixing and combustion in arbitrary three-dimensional time-dependent geometric configurations. The context is a probability density function (PDF) based approach intended for modelling in cylinder processes in reciprocating piston internal combustion (IC) engines. Issues addressed include mean estimation, particle tracking and particle number-density control on three-dimensional unstructured deforming meshes. The suitability of the methodology for statistically time-dependent three-dimensional turbulent flow with large density variations is demonstrated via simulations of turbulent freon vapour/air mixing on an unstructured deforming mesh representing an idealized IC engine [13]. Computed profiles of mean and r.m.s. freon mole fractions show good quantitative agreement with measurements. Moreover, inherent advantages of the Lagrangian-Eulerian PDF approach are demonstrated, compared to Eulerian finite volume solutions of an (approximately) equivalent set of moment equations. The new approach is, by design, compatible with existing computational fluid dynamics codes that are used for multidimensional modelling of in-cylinder thermal fluids processes. This work broadens the accessibility of PDF methods for practical turbulent combustion systems.


1999 ◽  
Vol 385 ◽  
pp. 41-62 ◽  
Author(s):  
DEWEI QI

A lattice-Boltzmann method has been developed to simulate suspensions of both spherical and non-spherical particles in finite-Reynolds-number flows. The results for sedimentation of a single elliptical particle are shown to be in excellent agreement with the results of Huang, Hu & Joseph (1998) who used a finite-element method. Sedimentation of two-dimensional circular and rectangular particles in a two-dimensional channel and three-dimensional spherical particles in a tube with square cross-section is simulated. Computational results are consistent with experimentally observed phenomena, such as drafting, kissing and tumbling.


2013 ◽  
Vol 136 (3) ◽  
Author(s):  
Andreas Fiolitakis ◽  
Peter Ess ◽  
Peter Gerlinger ◽  
Manfred Aigner

The present work explores the capability of the transported probability density function (PDF) method to predict nitric oxide (NO) formation in turbulent combustion. To this end a hybrid finite-volume/Lagrangian Monte Carlo method is implemented into the THETA code of the German Aerospace Center (DLR). In this hybrid approach the transported PDF method governs the evolution of the thermochemical variables, whereas the flow field evolution is computed with a Reynolds-averaged Navier–Stokes (RANS) method. The method is used to compute a turbulent hydrogen-air flame and a methane-air flame and computational results are compared to experimental data. In order to assess the advantages of the transported PDF method, the flame computations are repeated with the “laminar chemistry” approach as well as with an “assumed PDF” method, which are both computationally less expensive. The present study reveals that the transported PDF method provides the highest accuracy in predicting the overall flame structure and nitric oxide formation.


2021 ◽  
Vol 2134 (1) ◽  
pp. 012003
Author(s):  
A O Podkopayev ◽  
M A Stepanov

Abstract The two-dimensional five-point non-coherent model replacing a distributed radar target is explored in this work. Four fixed model points are set in corners of the square but the fifth movable point lies inside of this square. Model points are supplied by normal uncorrelated random processes. The possibilities of the five-point non-coherent model of a distributed radar object for independent control of the producing angle noise parameters along two orthogonal coordinate axes are explored. The disadvantage of this model is noted - the connection of parameters values of angle noise probability density function for two coordinate axes. The expression describing this connection is specified. Expressions determining the boundaries of the allowable coordinate values of the fifth movable point of the five-point non-coherent model, within which the model provides the set parameters of the angle noise probability density function, are defined. The arrived results are validated by program simulations.


Sign in / Sign up

Export Citation Format

Share Document