On the two-dimensional differential transform method

2003 ◽  
Vol 143 (2-3) ◽  
pp. 361-374 ◽  
Author(s):  
Fatma Ayaz
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Wayinhareg Gashaw Belayeh ◽  
Yesuf Obsie Mussa ◽  
Ademe Kebede Gizaw

In this paper, the reduced differential transform method (RDTM) is successfully implemented for solving two-dimensional nonlinear Klein–Gordon equations (NLKGEs) with quadratic and cubic nonlinearities subject to appropriate initial conditions. The proposed technique has the advantage of producing an analytical approximation in a convergent power series form with a reduced number of calculable terms. Two test examples from mathematical physics are discussed to illustrate the validity and efficiency of the method. In addition, numerical solutions of the test examples are presented graphically to show the reliability and accuracy of the method. Also, the results indicate that the introduced method is promising for solving other type systems of NLPDEs.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Jincun Liu ◽  
Hong Li

By introducing the fractional derivative in the sense of Caputo and combining the pretreatment technique to deal with long nonlinear items, the generalized two-dimensional differential transform method is proposed for solving the time-fractional Hirota-Satsuma coupled KdV equation and coupled MKdV equation. The presented method is a numerical method based on the generalized Taylor series expansion which constructs an analytical solution in the form of a polynomial. The numerical results show that the generalized two-dimensional differential transform method is very effective for the fractional coupled equations.


Sign in / Sign up

Export Citation Format

Share Document