First and second law analysis of a solar assisted heat pump based heating system

2003 ◽  
Vol 44 (3) ◽  
pp. 178
1994 ◽  
Vol 116 (3) ◽  
pp. 453-461
Author(s):  
K. Amrane ◽  
R. Radermacher

A second-law analysis is conducted on both the single-stage vapor compression heat pump with solution circuit (VCHSC) and its modified version, the cycle with a preheater and additional desorber. The results are compared to a conventional heat pump cycle operating with pure ammonia. The location and magnitude of the irreversibilities of the individual components constituting the cycles are determined. The entropic average temperature is used in computing the irreversibilities. The total work input to the heat pumps is then conveniently decomposed into two parts: the minimum work input or the work of a reversible cycle operating between the desorber and absorber entropic average temperatures, plus an additional input of work caused by the irreversibilities of the different processes of the cycles. The analysis reveals that the compressor is the most inefficient component of the heat pumps with losses accounting for about one fourth of the work input. The irreversibilities in the desorber and absorber are found to be minimum when there is a good match in both the solution and heat transfer fluid temperature glides. By adding a preheater and an additional desorber, the irreversibilities in the single-stage VCHSC are considerably reduced. However, it is shown that it is the preheater and not the additional desorber that has by far the most significant impact on the heat pump’s efficiency improvements. Compared to a conventional ammonia vapor compression cycle, the modified VCHSC, which has twice as many sources of irreversibility, shows nevertheless a maximum improvement of 56.1 percent in second-law efficiency.


2016 ◽  
Vol 124 ◽  
pp. 236-240 ◽  
Author(s):  
Vittorio Verda ◽  
Sara Cosentino ◽  
Stefano Lo Russo ◽  
Adriano Sciacovelli

1995 ◽  
Vol 117 (3) ◽  
pp. 249-251 ◽  
Author(s):  
Geng Liu ◽  
Y. A. Cengel ◽  
R. H. Turner

Exergy destruction associated with the operation of a solar heating system is evaluated numerically via an exergy cascade. As expected, exergy destruction is dominated by heat transfer across temperature differences. An energy analysis is also given for comparison of exergy cascade to energy cascade. Efficiencies based on both the first law and second law of thermodynamics are calculated for a number of components and for the system. The results show that high first-law efficiency does not mean high second-law efficiency. Therefore, the second-law analysis has been proven to be a more powerful tool in identifying the site losses. The procedure used to determine total exergy destruction and second law efficiency can be used in a conceptual design and parametric study to evaluate the performance of other solar heating systems and other thermal systems.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 498
Author(s):  
Wasim Ullah Khan ◽  
Muhammad Awais ◽  
Nabeela Parveen ◽  
Aamir Ali ◽  
Saeed Ehsan Awan ◽  
...  

The current study is an attempt to analytically characterize the second law analysis and mixed convective rheology of the (Al2O3–Ag/H2O) hybrid nanofluid flow influenced by magnetic induction effects towards a stretching sheet. Viscous dissipation and internal heat generation effects are encountered in the analysis as well. The mathematical model of partial differential equations is fabricated by employing boundary-layer approximation. The transformed system of nonlinear ordinary differential equations is solved using the homotopy analysis method. The entropy generation number is formulated in terms of fluid friction, heat transfer and Joule heating. The effects of dimensionless parameters on flow variables and entropy generation number are examined using graphs and tables. Further, the convergence of HAM solutions is examined in terms of defined physical quantities up to 20th iterations, and confirmed. It is observed that large λ1 upgrades velocity, entropy generation and heat transfer rate, and drops the temperature. High values of δ enlarge velocity and temperature while reducing heat transport and entropy generation number. Viscous dissipation strongly influences an increase in flow and heat transfer rate caused by a no-slip condition on the sheet.


Sign in / Sign up

Export Citation Format

Share Document