04/00829 Manufacture of biodiesel fuel. Part 1. Production of fatty acid methyl esters from rape oil and spent fat in batch operation

2004 ◽  
Vol 45 (2) ◽  
pp. 107-108
2020 ◽  
Vol 850 ◽  
pp. 133-137
Author(s):  
Valdis Kampars ◽  
Ruta Kampare ◽  
Anastasija Naumova

The blends of varying proportions of biodiesel fuel containing fatty acid methyl esters and triacetin (FAME*), synthesised accordingly to Latvian patent LV 15 373 and summer diesel were prepared, analysed and compared with diesel fuel. The selected fuel properties (viscosity, density, carbon residue and cold flow properties) tested accordingly to standard LVS-EN 14214 have indicated a good potential of FAME*, obtained by synthesis of fatty acid methyl esters (FAME) by simultaneous conversion of glycerol to triacetin as a renewable diesel engine fuel. The results showed that blends containing 5 to 25% of FAME* in summer diesel yielded the properties closely matching that of diesel.Introduction


2014 ◽  
Vol 953-954 ◽  
pp. 1117-1120
Author(s):  
Yong Bin Lai ◽  
Bo Wang ◽  
Xiu Chen ◽  
Xin Jin ◽  
Yu Qi Zhang ◽  
...  

The compositions and kinematic viscosity of Pistacia Chinensis-based biodiesel (PCME) are investigated. Viscosity temperature equations are proposed for predicting kinematic viscosity of PCME and its blends with 0 petrodiesel (0PD) /-10 petrodiesel (-10PD) at different temperature. In this work, we show that PCME is mainly composed of fatty acid methyl esters of 14-24 even-numbered C atoms: C14:0-C24:0, C16:1-C22:1, C18:2-C20:2 and C18:3. PCME has higher kinematic viscosity and unfavorable viscosity temperature property, its kinematic viscosity (40 °C) is 5.99 mm2/s. An approach to reduce viscosity and enhance viscosity temperature property is put forward: blending with 0 PD/-10PD.


2014 ◽  
Vol 8 (8) ◽  
pp. 1004-1008 ◽  
Author(s):  
V. I. Bogdan ◽  
A. E. Koklin ◽  
V. G. Krasovsky ◽  
V. V. Lunin ◽  
Ya. E. Sergeeva ◽  
...  

Transport ◽  
2012 ◽  
Vol 27 (2) ◽  
pp. 111-117 ◽  
Author(s):  
Eglė Sendžikienė ◽  
Violeta Makarevičienė ◽  
Svitlana Kalenska

Possible alternative raw materials for producing biodiesel fuel are as follows: Camelina sativa oil, fibre linseed oil and waste animal fat. The aim of this work was to analyse the emissions of the engine running on multi-component fuels containing fossil diesel fuel (D), linseed or Camelina sativa oil fatty acid methyl esters (LSME and CME respectively) and beef tallow (TME) fatty acid methyl esters. The concentration of fatty acid methyl esters (FAME) in the mixtures with fossil diesel fuel varied from 10% to 30%. The mass proportion of LSME (or CME) and TME in the mixtures was 1:4. The lowest NOxconcentration in exhaust gases was observed when the mixtures contained 10% of biofuel. For the mixtures containing CME and LSME, NOx concentrations reached 290 and 295 ppm respectively when the engine rotation speed was 1200 min−1 and 370 and 375 ppm respectively when rotation speed was 2000 min−1. CO concentration was the lowest when fuel contained 30% of the FAME mixture. HC concentration was slightly higher when the mixtures containing LSME were used relative to the mixtures containing CME. The amount of HC did not fluctuate considerably (195÷254 ppm) at rotation speeds between 1200 and 2000 min−1. Lower HC concentration was found in exhaust gas when the fuels containing 10% and 20% of biofuel were used. The lowest concentration of polycyclic aromatic hydrocarbons (PAHs) was found when the mixtures contained 30% of biofuel made of LSME or CME corresponding to 30 µg/m3 and 38 µg/m3 at a rotation speed of 1200 min−1 and 640 µg/m3 and 670 µg/m3 at a rotation speed of 2000 min−1 respectively. The greatest amount of smokiness at a high rotation speed of 2000 min−1 was observed when the mixture contained 30% of multi-component biodiesel fuel. It was found that the fuel containing a mixture of 30% of LSME biofuel and 20% of CME biofuel had a small advantage.


2021 ◽  
Vol 22 (3) ◽  
pp. 1256
Author(s):  
Parncheewa Udomsap ◽  
Apiluck Eiad-Ua ◽  
Shih-Yuan Chen ◽  
Takehisa Mochizuki ◽  
Nuwong Chollacoop ◽  
...  

To improve the oxidative stability of biodiesel fuel (BDF), the polyunsaturated fatty acid methyl esters (poly-FAME) presented in commercial palm oil-derived biodiesel fuel (palm-BDF) were selectively hydrogenated to monounsaturated fatty acid methyl esters (mono-FAME) under a mild condition (80 °C, 0.5 MPa) using activated carbon (AC)-supported Pd catalysts with a Pd loading of 1 wt.%. The partially hydrotreated palm-BDF (denoted as H-FAME) which has low poly-FAME components is a new type of BDF with enhanced quality for use in high blends. In this study, we reported that the chemical states and particle sizes of Pd in the prepared Pd/AC catalysts were significantly influenced by the Pd precursors, Pd(NO3)2 and Pd(NH3)4Cl2, and thus varied their hydrogenation activity and product selectivity. The 1%Pd/AC (nit) catalyst, prepared using Pd(NO3)2, presented high performance for selective hydrogenation of poly-FAME into mono-FAME with high oxidation stability, owning to its large Pd particles (8.4 nm). Conversely, the 1%Pd/AC (amc) catalyst, prepared using Pd(NH3)4Cl2, contained small Pd particles (2.7 nm) with a little Cl residues, which could be completely removed by washing with an aqueous solution of 0.1 M NH4OH. The small Pd particles gave increased selectivity toward unwanted-FAME components, particularly the saturated fatty acid methyl esters during the hydrogenation of poly-FAME. This selectivity is unprofitable for improving the biodiesel quality.


Sign in / Sign up

Export Citation Format

Share Document