EXHAUST EMISSIONS FROM THE ENGINE RUNNING ON MULTI-COMPONENT FUEL

Transport ◽  
2012 ◽  
Vol 27 (2) ◽  
pp. 111-117 ◽  
Author(s):  
Eglė Sendžikienė ◽  
Violeta Makarevičienė ◽  
Svitlana Kalenska

Possible alternative raw materials for producing biodiesel fuel are as follows: Camelina sativa oil, fibre linseed oil and waste animal fat. The aim of this work was to analyse the emissions of the engine running on multi-component fuels containing fossil diesel fuel (D), linseed or Camelina sativa oil fatty acid methyl esters (LSME and CME respectively) and beef tallow (TME) fatty acid methyl esters. The concentration of fatty acid methyl esters (FAME) in the mixtures with fossil diesel fuel varied from 10% to 30%. The mass proportion of LSME (or CME) and TME in the mixtures was 1:4. The lowest NOxconcentration in exhaust gases was observed when the mixtures contained 10% of biofuel. For the mixtures containing CME and LSME, NOx concentrations reached 290 and 295 ppm respectively when the engine rotation speed was 1200 min−1 and 370 and 375 ppm respectively when rotation speed was 2000 min−1. CO concentration was the lowest when fuel contained 30% of the FAME mixture. HC concentration was slightly higher when the mixtures containing LSME were used relative to the mixtures containing CME. The amount of HC did not fluctuate considerably (195÷254 ppm) at rotation speeds between 1200 and 2000 min−1. Lower HC concentration was found in exhaust gas when the fuels containing 10% and 20% of biofuel were used. The lowest concentration of polycyclic aromatic hydrocarbons (PAHs) was found when the mixtures contained 30% of biofuel made of LSME or CME corresponding to 30 µg/m3 and 38 µg/m3 at a rotation speed of 1200 min−1 and 640 µg/m3 and 670 µg/m3 at a rotation speed of 2000 min−1 respectively. The greatest amount of smokiness at a high rotation speed of 2000 min−1 was observed when the mixture contained 30% of multi-component biodiesel fuel. It was found that the fuel containing a mixture of 30% of LSME biofuel and 20% of CME biofuel had a small advantage.

2020 ◽  
Vol 850 ◽  
pp. 133-137
Author(s):  
Valdis Kampars ◽  
Ruta Kampare ◽  
Anastasija Naumova

The blends of varying proportions of biodiesel fuel containing fatty acid methyl esters and triacetin (FAME*), synthesised accordingly to Latvian patent LV 15 373 and summer diesel were prepared, analysed and compared with diesel fuel. The selected fuel properties (viscosity, density, carbon residue and cold flow properties) tested accordingly to standard LVS-EN 14214 have indicated a good potential of FAME*, obtained by synthesis of fatty acid methyl esters (FAME) by simultaneous conversion of glycerol to triacetin as a renewable diesel engine fuel. The results showed that blends containing 5 to 25% of FAME* in summer diesel yielded the properties closely matching that of diesel.Introduction


2021 ◽  
Vol 903 ◽  
pp. 75-80
Author(s):  
Valdis Kampars ◽  
Anastasija Naumova

The blends of varying proportions of biodiesel (FAME) containing formate esters of glycerol and 93.0 wt.% fatty acid methyl esters, obtained in an interesterification reaction with methyl formate without further purification, and winter diesel fuel, were prepared, analyzed and compared with winter diesel fuel. The obtained results showed that blends comprising up to 20 vol.% of FAME fulfill the requirements of the standard LVS EN 590 concerning such characteristics as cold flow properties, viscosity, density, and carbon residue. The increase of FAME content worsens the cold flow properties; however, the mixed fuel with 20 vol.% or lower FAME content, according to the cloud point and cold filter plugging point values, remains in the same severe climate "Class 0" group as winter fuel. The carbon residue of mixed fuels raises with increasing FAME content, but stay low and do not exceed the limits of standard for mixtures with FAME percentage up to 20 vol.%. The comparison of mixed fuels containing 20 vol.% of FAME and the same amount of neat biodiesel (99.6 wt.% of fatty acid methyl esters) shows that the difference is negligible. The obtained results have indicated a good potential of FAME obtained in the interesterification reaction with methyl formate without further purification as a diesel fuel additive for up to 20 vol.%.


Transport ◽  
2010 ◽  
Vol 25 (1) ◽  
pp. 22-28 ◽  
Author(s):  
Sergejus Lebedevas ◽  
Galina Lebedeva ◽  
Violeta Makarevičienė ◽  
Irina Kazanceva ◽  
Kiril Kazancev

The article explores the possibilities of using fatty acid methyl esters derived from the oil of a new species of oily plant Camelina sativa not demanding on soil. The performed research on the physical and chemical properties of pure methyl esters from Camelina sativa show that biofuels do not meet requirements for the biodiesel fuel standard (LST EN 14214:2009) of a high iodine value and high content of linoleic acid methyl ester, so they must be mixed with methyl esters produced from pork lard the content of which in the mixture must be not less than 32%. This article presents the results of tests on combustion emission obtained when three‐cylinder diesel engine VALMET 320 DMG was fuelled with a mixture containing 30% of this new kind of fuel with fossil diesel fuel comparing with emissions obtained when the engine was fuelled with a fuel mixture containing 30% of conventional biodiesel fuel (rapeseed oil methyl esters) with fossil diesel fuel. The obtained results show that using both types of fuel, no significant differences in CO and NOx concentrations were observed throughout the tested load range. When operating on fuels containing methyl esters from Camelina sativa, HC emissions decreased by 10 to 12% and the smokeness of exhaust gas by 12 to 25%.


Sign in / Sign up

Export Citation Format

Share Document