06/00226 Theoretical and experimental study on the aerodynamic characteristics of a horizontal axis wind turbine

2006 ◽  
Vol 47 (1) ◽  
pp. 32
Energy ◽  
2005 ◽  
Vol 30 (11-12) ◽  
pp. 2089-2100 ◽  
Author(s):  
Koki Kishinami ◽  
Hiroshi Taniguchi ◽  
Jun Suzuki ◽  
Hiroshi Ibano ◽  
Takashi Kazunou ◽  
...  

Wind Energy ◽  
2006 ◽  
Vol 9 (4) ◽  
pp. 361-370 ◽  
Author(s):  
Christophe Sicot ◽  
Philippe Devinant ◽  
Thomas Laverne ◽  
Stéphane Loyer ◽  
Jacques Hureau

Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3124 ◽  
Author(s):  
Xiaodong Wang ◽  
Zhaoliang Ye ◽  
Shun Kang ◽  
Hui Hu

Wind turbines inevitably experience yawed flows, resulting in fluctuations of the angle of attack (AOA) of airfoils, which can considerably impact the aerodynamic characteristics of the turbine blades. In this paper, a horizontal-axis wind turbine (HAWT) was modeled using a structured grid with multiple blocks. Then, the aerodynamic characteristics of the wind turbine were investigated under static and dynamic yawed conditions using the Unsteady Reynolds Averaged Navier-Stokes (URANS) method. In addition, start-stop yawing rotations at two different velocities were studied. The results suggest that AOA fluctuation under yawing conditions is caused by two separate effects: blade advancing & retreating and upwind & downwind yawing. At a positive yaw angle, the blade advancing & retreating effect causes a maximum AOA at an azimuth angle of 0°. Moreover, the effect is more dominant in inboard airfoils compared to outboard airfoils. The upwind & downwind yawing effect occurs when the wind turbine experiences dynamic yawing motion. The effect increases the AOA when the blade is yawing upwind and vice versa. The phenomena become more dominant with the increase of yawing rate. The torque of the blade in the forward yawing condition is much higher than in backward yawing, owing to the reversal of the yaw velocity.


2011 ◽  
Vol 2011.16 (0) ◽  
pp. 359-362
Author(s):  
Toshiyuki ASO ◽  
Katsuya IIDA ◽  
Tomoyuki AIDA ◽  
Akihiro UNNO ◽  
Yuuki HAYASHI ◽  
...  

2013 ◽  
Vol 291-294 ◽  
pp. 445-449
Author(s):  
De Shun Li ◽  
Ren Nian Li

Field experimental study is performed on a 33 kW horizontal axis wind turbine with rotor diameter of 14.8 m. The distribution of pressure is gathered by disposed 191 taped pressure sensors span-ward on seven particular sections of a blade. The results will provide a comparative basis to wind tunnel experiment and numerical calculation of the flow of the wind turbine.


Sign in / Sign up

Export Citation Format

Share Document