Hot-spot stress evaluation of fatigue in welded structural connections supported by finite element analysis

2000 ◽  
Vol 22 (2) ◽  
pp. 85-91 ◽  
Author(s):  
G Savaidis
Author(s):  
Mikkel L. Larsen ◽  
Vikas Arora ◽  
Marie Lützen ◽  
Ronnie R. Pedersen ◽  
Eric Putnam

Abstract Several methods for modelling and finite element analysis of tubular welded joints are described in various design codes. These codes provide specific recommendations for modelling of the welded joints, using simple weld geometries. In this paper, experimental hot-spot strain range results from a full-scale automatically welded K-node test are compared to corresponding finite element models. As part of investigating the automatically welded K-joint, 3D scans of the weld surfaces have been made. These scans are included in the FE models to determine the accuracy of the FE models. The results are compared to an FE model with a simple weld geometry based on common offshore design codes and a model without any modelled weld. The results show that the FE model with 3D scanned welds is more accurate than the two simple FE models. As the weld toe location of the 3D scanned weld is difficult to locate precisely in the FE model and as misplacement of strain gauges are possible, stochastic finite element modelling is performed to analyse the resulting probabilistic hot-spot stresses. The results show large standard deviations, showing the necessity to evaluate the hot-spot stress method when using 3D scanned welds.


2007 ◽  
Vol 353-358 ◽  
pp. 925-928 ◽  
Author(s):  
Tai Quan Zhou ◽  
Tommy Hung Tin Chan

The suspension bridge has more flexibility and repetitive vehicles produce stress cycles in members. Then fatigue of the member is accumulated with the daily traffic loadings. In order to evaluate the working condition of the Tsing Ma Bridge, the online monitoring health system has been installed in long suspension bridge. The location of the strain sensor is not exactly at the critical member locations. The hot spot stress analysis for critical members is necessary for accurate fatigue evaluation of the bridge. The global finite element analysis of the Tsing Ma Bridge under traffic loading is performed to determine the critical fatigue member locations. A detailed local finite element analysis for the welded connections is performed to determine the hot spot stress of critical fatigue location. As a case for study, the calculated stress concentration factor is combined with the nominal representative stress block cycle to obtain the representative hot spot stress range cycle block under traffic loading from online health monitoring system. The comparison result shows that the nominal stress approach cannot consider the most critical stress of the fatigue damage location and the hot spot stress approach is more appropriate for fatigue evaluation.


2016 ◽  
Vol 851 ◽  
pp. 739-744
Author(s):  
Bo Li ◽  
Hong Gang Lei ◽  
Xu Yang

In this paper, the author uses ANSYS, the software of finite element analysis, to establish the finite element model, the hot spot stress value of different connection structures of steel tube-welded hollow sphere under uniaxial elongation has been analyzed, the theoretical stress concentration factor of this joint has been obtained. Through the static test on the four typical test-piece, 26 steel tube-welded hollow spherical nodes in total, the actually measured stress concentration factor of the joints has been obtained. The theoretical analysis basically coincides with the law of stress concentration factor obtained from the test results.


2020 ◽  
Vol 4 (1) ◽  
pp. 022-027
Author(s):  
Agarwal Samarth Kumar ◽  
Mittal Reena ◽  
Singhal Romil ◽  
Hasan Sarah ◽  
Chaukiyal Kanchan

Sign in / Sign up

Export Citation Format

Share Document