Erratum to “Three-dimensional flow and heat transfer calculations of film cooling at the leading edge of a symmetrical turbine blade model” [Int. J. of Heat and Fluid Flow 22 (2001) 113–122]

2001 ◽  
Vol 22 (5) ◽  
pp. 571 ◽  
Author(s):  
D. Lakehal ◽  
G.S. Theodoridis ◽  
W. Rodi
Author(s):  
Yiwen Ma ◽  
Haiwang Li ◽  
Meisong Yang ◽  
Min Wu ◽  
Huimin Zhou

Engine turbine blades operate at a high speed of rotation and are subjected to high temperature and pressure prevailing gas from the combustion chamber, making the working condition very harsh. In particular, the leading edge of the blade, which is directly subjected to high-temperature gas impacts, is the hottest part of the turbine. Therefore, it is of great importance to improve the protection of the blade leading edge and enhance the understanding of this part of the flow field and temperature field. This paper will focus on the phenomenon of wake deflection and study the film cooling characteristics of the turbine blade under rotating condition. The characteristics of pressure surface and suction surface of the blade are verified by numerical simulation. The contents cover the influence of the film hole diameter, pitch, blowing ratio, rotation number and the development process, the film cooling efficiency on the outflow of coolant film. The result shows that Coriolis force, centrifugal force and secondary flow induced by rotation will change the mainstream flow along the blade, which will lead to changes of pattern concerning the development of the film on the blade surface. In the process of wake development, deflection occurs in different directions at different positions, and the greater the rotation number is, the more obvious the degree of deflection will be. Studying the model with film holes on the leading edge of the blade, these phenomena can be observed along the downstream on the pressure and suction surfaces. Also, models with film holes independently set on the pressure and suction surfaces can be used as proof of these features. At the same time, this paper studies the flow and heat transfer characteristics of the leading-edge gas film under rotating condition and focuses on the influence of rotation on the outflow and the development processes of the wake. The gas film cooling models in rotating state of different film hole diameters and film hole radial spacing will also be compared to further understand the flow and heat transfer characteristics of film cooling on the leading edge of the blade.


Author(s):  
Gongnan Xie ◽  
Bengt Sunde´n

Gas turbine blade tips encounter large heat load as they are exposed to the high temperature gas. A common way to cool the blade and its tip is to design serpentine passages with 180-deg turns under the blade tip-cap inside the turbine blade. Improved internal convective cooling is therefore required to increase the blade tip life time. This paper presents numerical predictions of turbulent fluid flow and heat transfer through two-pass channels with and without guide vanes placed in the turn regions using RANS turbulence modeling. The effects of adding guide vanes on the tip-wall heat transfer enhancement and the channel pressure loss were analyzed. The guide vanes have a height identical to that of the channel. The inlet Reynolds numbers are ranging from 100,000 to 600,000. The detailed three-dimensional fluid flow and heat transfer over the tip-walls are presented. The overall performances of several two-pass channels are also evaluated and compared. It is found that the tip heat transfer coefficients of the channels with guide vanes are 10∼60% higher than that of a channel without guide vanes, while the pressure loss might be reduced when the guide vanes are properly designed and located, otherwise the pressure loss is expected to be increased severely. It is suggested that the usage of proper guide vanes is a suitable way to augment the blade tip heat transfer and improve the flow structure, but is not the most effective way compared to the augmentation by surface modifications imposed on the tip-wall directly.


Author(s):  
Vijay K. Garg

A multi-block, three-dimensional Navier-Stokes code has been used to compute heat transfer coefficient on the blade, hub and shroud for a rotating high-pressure turbine blade with 172 film-cooling holes in eight rows. Film cooling effectiveness is also computed on the adiabatic blade. Wilcox’s k-ω model is used for modeling the turbulence. Of the eight rows of holes, three are staggered on the shower-head with compound-angled holes. With so many holes on the blade it was somewhat of a challenge to get a good quality grid on and around the blade and in the tip clearance region. The final multi-block grid consists of 4784 elementary blocks which were merged into 276 super blocks. The viscous grid has over 2.2 million cells. Each hole exit, in its true oval shape, has 80 cells within it so that coolant velocity, temperature, k and ω distributions can be specified at these hole exits. It is found that for the given parameters, heat transfer coefficient on the cooled, isothermal blade is highest in the leading edge region and in the tip region. Also, the effectiveness over the cooled, adiabatic blade is the lowest in these regions. Results for an uncooled blade are also shown, providing a direct comparison with those for the cooled blade. Also, the heat transfer coefficient is much higher on the shroud as compared to that on the hub for both the cooled and the uncooled cases.


Sign in / Sign up

Export Citation Format

Share Document