The behaviour of through-deck welded shear connectors: an experimental and numerical study

2001 ◽  
Vol 57 (12) ◽  
pp. 1359-1380 ◽  
Author(s):  
Boksun Kim ◽  
Howard D Wright ◽  
Roy Cairns
ce/papers ◽  
2021 ◽  
Vol 4 (2-4) ◽  
pp. 736-743
Author(s):  
Xianghe Dai ◽  
Dennis Lam ◽  
Therese Sheehan ◽  
Jie Yang ◽  
Kan Zhou

Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 341 ◽  
Author(s):  
Shuangjie Zheng ◽  
Yuqing Liu ◽  
Yangqing Liu ◽  
Chen Zhao

In steel and concrete composite bridges, it is difficult to perforate the reinforcing bars through the circular holes of conventional perfobond shear connectors with multi-ribs. To ease the installation of perforating rebars, an alternative notched perfobond shear connector was proposed by cutting out the edge of the circular hole. This paper presents the push-out test results of six specimens which were fabricated and loaded to failure. The main purpose was to compare the failure mode, shear capacity and slip behavior of perfobond shear connectors using circular holes and notched holes. Furthermore, 43 nonlinear finite element simulations were performed to further study the effects of several variables, including the hole diameter, the hole distance, the hole number, the cut width, the perfobond thickness, the concrete strength, the rebar diameter, the rebar strength, and the steel strength. The parametric results were generated to evaluate the shear capacity equations for perfobond shear connectors. Finally, an analytical model was developed to estimate the shear capacity of notched perfobond shear connectors.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3627
Author(s):  
Sherif A. Elsawaf ◽  
Saleh O. Bamaga

In this paper, the findings of numerical modeling of the composite action between normal concrete and Cold-Formed Steel (CFS) beams are presented. To obtain comprehensive structural behavior, the numerical model was designed using 3-D brick components. The simulation results were correlated to the experimental results of eight push tests, using three types of innovative shear connectors in addition to standard headed stud shear connectors, with two different thicknesses of a CFS channel beam. The proposed numerical model was found to be capable of simulating the failure mode of the push test as well as the behavior of shear connectors in order to provide composite action between the cold-formed steel beam and concrete using the concrete damaged plasticity model.


Structures ◽  
2021 ◽  
Vol 33 ◽  
pp. 737-747
Author(s):  
João Victor Fragoso Dias ◽  
Hermes Carvalho ◽  
Francisco Carlos Rodrigues ◽  
Karen Aparecida Freitas Peroni Maia ◽  
Rodrigo Barreto Caldas

1998 ◽  
Vol 77 (2) ◽  
pp. 473-484 ◽  
Author(s):  
M. Sampoli, P. Benassi, R. Dell'Anna,

Sign in / Sign up

Export Citation Format

Share Document