Cytochrome cd1 nitrite reductase of denitrification; a haem enzyme with an unusual structure and intriguing biogenesis

1997 ◽  
Vol 67 (1-4) ◽  
pp. 78
Author(s):  
V. Fülöp ◽  
P. Williams ◽  
S. Baker ◽  
N. Saunders ◽  
A. Koppenhöfer ◽  
...  
PLoS ONE ◽  
2015 ◽  
Vol 10 (6) ◽  
pp. e0129940 ◽  
Author(s):  
Célia M. Silveira ◽  
Pedro O. Quintas ◽  
Isabel Moura ◽  
José J. G. Moura ◽  
Peter Hildebrandt ◽  
...  

2008 ◽  
Vol 36 (6) ◽  
pp. 1155-1159 ◽  
Author(s):  
Serena Rinaldo ◽  
Alessandro Arcovito ◽  
Giorgio Giardina ◽  
Nicoletta Castiglione ◽  
Maurizio Brunori ◽  
...  

The cytochrome cd1 nitrite reductases are enzymes that catalyse the reduction of nitrite to nitric oxide (NO) in the bacterial energy conversion denitrification process. These enzymes contain two different redox centres: one covalently bound c-haem, which is reduced by external donors, and one peculiar d1-haem, where catalysis occurs. In the present paper, we summarize the current understanding of the reaction of nitrite reduction in the light of the most recent results on the enzyme from Pseudomonas aeruginosa and discuss the differences between enzymes from different organisms. We have evidence that release of NO from the ferrous d1-haem occurs rapidly enough to be fully compatible with the turnover, in contrast with previous hypotheses, and that the substrate nitrite is able to displace NO from the d1-haem iron. These results shed light on the mechanistic details of the activity of cd1 nitrite reductases and on the biological role of the d1-haem, whose presence in this class of enzymes has to date been unexplained.


Author(s):  
Serena Rinaldo ◽  
Giorgio Giardina ◽  
Francesca Cutruzzolà

2003 ◽  
Vol 185 (21) ◽  
pp. 6308-6315 ◽  
Author(s):  
Isobel V. Pearson ◽  
M. Dudley Page ◽  
Rob J. M. van Spanning ◽  
Stuart J. Ferguson

ABSTRACT In Paracoccus denitrificans, electrons pass from the membrane-bound cytochrome bc 1 complex to the periplasmic nitrite reductase, cytochrome cd 1. The periplasmic protein cytochrome c 550 has often been implicated in this electron transfer, but its absence, as a consequence of mutation, has previously been shown to result in almost no attenuation in the ability of the nitrite reductase to function in intact cells. Here, the hypothesis that cytochrome c 550 and pseudoazurin are alternative electron carriers from the cytochrome bc 1 complex to the nitrite reductase was tested by construction of mutants of P. denitrificans that are deficient in either pseudoazurin or both pseudoazurin and cytochrome c 550. The latter organism, but not the former (which is almost indistinguishable in this respect from the wild type), grows poorly under anaerobic conditions with nitrate as an added electron acceptor and accumulates nitrite in the medium. Growth under aerobic conditions with either succinate or methanol as the carbon source is not significantly affected in mutants lacking either pseudoazurin or cytochrome c 550 or both these proteins. We concluded that pseudoazurin and cytochrome c 550 are the alternative electron mediator proteins between the cytochrome bc 1 complex and the cytochrome cd 1-type nitrite reductase. We also concluded that expression of pseudoazurin is mainly controlled by the transcriptional activator FnrP.


2001 ◽  
Vol 28 (9) ◽  
pp. 991 ◽  
Author(s):  
Karin Kloos ◽  
Alexander Mergel ◽  
Christopher Rösch ◽  
Hermann Bothe

This paper originates from an address at the 8th International Symposium on Nitrogen Fixation with Non-Legumes, Sydney, NSW, December 2000 Different Azospirillumstrains and some other plant growth-promoting rhizobacteria (PGPR) were screened for the occurrence of genes coding for denitrification and nitrogenase reductase (nifH) using polymerase chain reaction (PCR)-based techniques. All PGPR examined were nitrogenase-positive. Azospirillum strains were remarkably dissimilar with respect to denitrification capabilities, in particular with respect to genes of the dissimilatory nitrite reductase. A. brasilense, A. lipoferum and A. halopraeferens strains possess a cytochrome cd1-containing nitrite reductase with low sequence similarities among them. A. irakense and A. doebereinerae have a Cu-containing nitrite reductase and A. amazonense is unable to denitrify. The molecular data were corroborated by activity measurements. The current results indicate that the inability to perform denitrification is unlikely a selective advantage for Azospirillum spp. and other associative bacteria for forming an association with plant roots.


2013 ◽  
Vol 33 (3) ◽  
Author(s):  
Tristan Nicke ◽  
Tobias Schnitzer ◽  
Karin Münch ◽  
Julia Adamczack ◽  
Kristin Haufschildt ◽  
...  

The periplasmic cytochrome cd1 nitrite reductase NirS occurring in denitrifying bacteria such as the human pathogen Pseudomonas aeruginosa contains the essential tetrapyrrole cofactors haem c and haem d1. Whereas the haem c is incorporated into NirS by the cytochrome c maturation system I, nothing is known about the insertion of the haem d1 into NirS. Here, we show by co-immunoprecipitation that NirS interacts with the potential haem d1 insertion protein NirN in vivo. This NirS–NirN interaction is dependent on the presence of the putative haem d1 biosynthesis enzyme NirF. Further, we show by affinity co-purification that NirS also directly interacts with NirF. Additionally, NirF is shown to be a membrane anchored lipoprotein in P. aeruginosa. Finally, the analysis by UV–visible absorption spectroscopy of the periplasmic protein fractions prepared from the P. aeruginosa WT (wild-type) and a P. aeruginosa ΔnirN mutant shows that the cofactor content of NirS is altered in the absence of NirN. Based on our results, we propose a potential model for the maturation of NirS in which the three proteins NirS, NirN and NirF form a transient, membrane-associated complex in order to achieve the last step of haem d1 biosynthesis and insertion of the cofactor into NirS.


Anaerobe ◽  
1995 ◽  
Vol 1 (4) ◽  
pp. 219-226 ◽  
Author(s):  
Stéphane Besson ◽  
Carla Carneiro ◽  
José J.G. Moura ◽  
Isabel Moura ◽  
Guy Fauque

Sign in / Sign up

Export Citation Format

Share Document