The Impact of Climatic Change and Land Use on the Hydrological Response of Mediterranean Soils; a Study along a Climatological Gradient in Crete (Greece)

Author(s):  
C. Boix ◽  
A. Calvo ◽  
A.C. Imeson ◽  
J.M. Schoorl ◽  
M.D. Soriano ◽  
...  
2015 ◽  
Vol 17 (4) ◽  
pp. 870-881 ◽  

<div> <p>In this study, we investigated the separate and combined impacts of climate and land-use changes on hydrological response in the Central Highlands of Vietnam during the period 1981-2009. The Mann-Kendall and Pettit tests were applied to detect the trends in the hydro-meteorological data. The Soil and Water Assessment Tool (SWAT) was setup in the region, and evaluation based on daily data highlights the models adequacy. From this, the responses of hydrology to climate variability and land-use changes were considered. Overall, variability in climate seems to strongly drive the variability in the hydrological response in comparison to alternations in the hydrological regime due to land-use change during the period 1981-2009. The results indicate that land-use change had a minor impact on the annual flow (0.4% reduction), whilst the impact from climate variability had been more significant (13.5% change). Under the impact of coupled climate variability and land-use change, the annual streamflow increased by 13.1%.</p> </div> <p>&nbsp;</p>


2021 ◽  
Author(s):  
Amit Kumar ◽  
Kumar Gaurav

&lt;p&gt;Climate and land-use change have altered the regional hydrological cycle. As a result, the mean summer monsoon rainfall has decreased by 10 % over central India during 1950-2015. This study evaluates the combined effect of climate and land-use change on the hydrological response of the upper Betwa River basin in Central India. We use Landsat satellite images from 1990 to 2018 to compute the changes in various land-use types; waterbody, built-up, forest, agriculture, and open land. In the past two decades, we found that the water body, built-up, and cropland have increased by 63 %, 65 %, and 3 %, respectively. However, forest and open land have decreased by 16 % and 23 %. Further, we observed a significant increase in annual average temperature and a decrease in the mean rainfall in the study area during 1980-2018.&lt;/p&gt;&lt;p&gt;We then coupled the land-use change with weather parameters (precipitation, temperature, wind speed, solar radiation, and relative humidity) and setup the SWAT (Soil and water assessment tool) model to simulate the hydrological responses in the catchment. We have run this model for two different time steps, 1980-2000 and 1998-2018, using the land-use of 1990 and 2018. Calibration and validation are performed for (1991-1994, 2000-2004) and (1995-1998, 2005-2008) respectively using SUFI-2 method. Our results show that the surface runoff and percolation decreased by -21 and -9 %, whereas evapotranspiration increased by 3 % in the upper Betwa River basin during 2001-2018. A decrease in rainfall, runoff, and percolation will have considerable implications on regional water security.&lt;/p&gt;


Ethiopia has altered natural ecosystems through experiencing a huge amount of land use change has effect on the hydrological condition. Therefore, this study was initiated to compare the past and potential future change of land use with its effect the hydrological response of the Weib catchment which is found in the upper Genale Dawa River basin which covers a total area of 7407.42km2. The Soil and Water Assessment Tool model was used to compare the impact of land use change on stream flow of the study area. The study was used model by using readily available spatial and temporal data and calibrated against measured discharge. The analysis of land use change has shown that the Settlement area has increased from 12.8% to 30.8%, cultivated land from 10.8% to 39.1% between 1986 and 2010, while area of Forest has reduced from 32.5% to 9.4 % and Grassland from 20.9% to 12.3%. The performance of the model was evaluated based on performance rating criteria, coefficient of determination, Nash and Sutcliff efficiency values for monthly runoff were 0.85 and 0.81during calibration, 0.88 and 0.87 during validation, respectively. The evaluation of the model response to changes indicated that the mean wet monthly flow for 2010 land cover enlarged by 40.7 % from 1986 land cover. Similarly, the 1986 land cover mean month flow was higher by 10% than the 1995 land cover flow for wet months. The dry average monthly flow was less by 45.2 %, for 2010 and 26 % for 1995 land covers when compared to that of 1986 land cover. The rapid conversion of Forest and Grassland cover to Urban and cultivated land resulted in higher peak flow and less base flow on Weib river hydrology.


2018 ◽  
Author(s):  
Magdalena Uber ◽  
Jean-Pierre Vandervaere ◽  
Isabella Zin ◽  
Isabelle Braud ◽  
Maik Heistermann ◽  
...  

Abstract. The Cévennes-Vivarais region in southern France is prone to high intensity and long lasting rainfalls that can lead to flash floods which are one of the most hazardous natural risks in Europe. The results of numerous studies show that besides rainfall depth and intensity and catchment characteristics such as topography, geology, land use and hydraulic routing, the catchment's initial soil moisture also impacts the hydrological response to rain events. The aim of this paper is to analyze the relationship between catchment mean initial soil moisture θ~ini and the hydrological response that is quantified using the event-based runoff coefficient &amp;varphi;ev in the two nested catchments of the Gazel (3.4 km2) and the Claduègne (43 km2). To this end, two research questions are addressed: (1) How heterogeneous are soil moisture patterns in space and time and do they correlate with land use? (2) How does soil moisture at the event onset affect the hydrological response? The estimation of soil moisture at catchment scale is hindered by high spatial and temporal variability. A sampling setup including 45 permanently installed frequency domain reflectancy probes that continuously measure volumetric soil moisture at three depths is applied. Additionally, on-alert measurements of soil moisture in the topsoil at ≈ 10 locations in each one of 11 plots are conducted. Thus, catchment mean soil moisture can be confidently assessed with a standard error of the mean of ≤ 1.7 vol% over a wide range of soil moisture conditions. &amp;varphi;ev is calculated from high-resolution discharge and precipitation data for several rain events with a cumulative precipitation Pcum ranging from less than 5 mm to more than 80 mm. Because of the high uncertainty of &amp;varphi;ev associated to the hydrograph separation method, &amp;varphi;ev is calculated with several methods, including graphical methods, digital filters and a tracer based method. The results indicate that the hydrological response depends on θ~ini : the seasonal as well as the within-event discharge dynamics follow that of soil moisture. During dry conditions &amp;varphi;ev is consistently close to zero, even for events with high and intense precipitation. Above a threshold of θ~ini = 34 vol% &amp;varphi;ev can reach values up to 0.99 but there is a high scatter. Some variability can be explained with a weak correlation of &amp;varphi;ev with Pcum and rain intensity, but a considerable part of the variability remains unexplained. It is concluded that threshold-based methods can be helpful to prevent overestimation of the hydrological response during dry catchment conditions. The impact of soil moisture on the hydrological response during wet catchment conditions, however, is still insufficiently understood and cannot be generalized based on the present results.


2020 ◽  
Vol 7 (1) ◽  
pp. 91
Author(s):  
Júlio Barboza Chiquetto ◽  
Maria Elisa Siqueira Silva ◽  
Rita Yuri Ynoue ◽  
Flávia Noronha Dutra Ribieiro ◽  
Débora Souza Alvim ◽  
...  

A poluição do ar é influenciada por fatores naturais e antropogênicos. Quatro pontos de monitoramento (veicular, comercial, residencial e background urbano (BGU))da poluição do ar em São Paulo foram avaliados durante 16 anos, revelando diferenças significativas devidoao uso do solo em todas as escalas temporais. Na escala diurna, as concentrações de poluentes primários são duas vezes mais altas nos pontos veicular e residencial do que no ponto BGU, onde a concentração de ozonio (O3) é 50% mais alta. Na escala sazonal, as concentrações de monóxido de carbono(CO) variaram em 80% devido ao uso do solo, e 55% pela sazonalidade.As variações sazonais ede uso do solo exercem impactos similares nas concentrações de O3 e monóxido de nitrogênio (NO). Para o material particulado grosso (MP10) e o dióxido de nitrogênio(NO2), as variações sazonais são mais intensas do que as por uso do solo. Na série temporal de 16 anos, o ponto BGU apresentou correlações mais fortes e significativas entre a média mensal de ondas longas (ROL) e o O3 (0,48) e o MP10 (0,37), comparadas ao ponto veicular (0,33 e 0,22, respectivamente). Estes resultados confirmam que o uso do solo urbano tem um papel significativo na concentração de poluentes em todas as escalas de análise, embora a sua influência se torne menos pronunciada em escalas maiores, conforme a qualidade do ar transita de um sistema antropogênico para um sistema natural. Isto poderá auxiliar decisões sobre políticas públicas em megacidades envolvendo a modificação do uso do solo.


2019 ◽  
Vol 11 (1) ◽  
pp. 108-129
Author(s):  
Andrew G. Mueller ◽  
Daniel J. Trujillo

This study furthers existing research on the link between the built environment and travel behavior, particularly mode choice (auto, transit, biking, walking). While researchers have studied built environment characteristics and their impact on mode choice, none have attempted to measure the impact of zoning on travel behavior. By testing the impact of land use regulation in the form of zoning restrictions on travel behavior, this study expands the literature by incorporating an additional variable that can be changed through public policy action and may help cities promote sustainable real estate development goals. Using a unique, high-resolution travel survey dataset from Denver, Colorado, we develop a multinomial discrete choice model that addresses unobserved travel preferences by incorporating sociodemographic, built environment, and land use restriction variables. The results suggest that zoning can be tailored by cities to encourage reductions in auto usage, furthering sustainability goals in transportation.


Sign in / Sign up

Export Citation Format

Share Document