scholarly journals Impacts of climate variability and land-use change on hydrology in the period 1981-2009 in the central highlands of Vietnam

2015 ◽  
Vol 17 (4) ◽  
pp. 870-881 ◽  

<div> <p>In this study, we investigated the separate and combined impacts of climate and land-use changes on hydrological response in the Central Highlands of Vietnam during the period 1981-2009. The Mann-Kendall and Pettit tests were applied to detect the trends in the hydro-meteorological data. The Soil and Water Assessment Tool (SWAT) was setup in the region, and evaluation based on daily data highlights the models adequacy. From this, the responses of hydrology to climate variability and land-use changes were considered. Overall, variability in climate seems to strongly drive the variability in the hydrological response in comparison to alternations in the hydrological regime due to land-use change during the period 1981-2009. The results indicate that land-use change had a minor impact on the annual flow (0.4% reduction), whilst the impact from climate variability had been more significant (13.5% change). Under the impact of coupled climate variability and land-use change, the annual streamflow increased by 13.1%.</p> </div> <p>&nbsp;</p>

2021 ◽  
Author(s):  
Amit Kumar ◽  
Kumar Gaurav

&lt;p&gt;Climate and land-use change have altered the regional hydrological cycle. As a result, the mean summer monsoon rainfall has decreased by 10 % over central India during 1950-2015. This study evaluates the combined effect of climate and land-use change on the hydrological response of the upper Betwa River basin in Central India. We use Landsat satellite images from 1990 to 2018 to compute the changes in various land-use types; waterbody, built-up, forest, agriculture, and open land. In the past two decades, we found that the water body, built-up, and cropland have increased by 63 %, 65 %, and 3 %, respectively. However, forest and open land have decreased by 16 % and 23 %. Further, we observed a significant increase in annual average temperature and a decrease in the mean rainfall in the study area during 1980-2018.&lt;/p&gt;&lt;p&gt;We then coupled the land-use change with weather parameters (precipitation, temperature, wind speed, solar radiation, and relative humidity) and setup the SWAT (Soil and water assessment tool) model to simulate the hydrological responses in the catchment. We have run this model for two different time steps, 1980-2000 and 1998-2018, using the land-use of 1990 and 2018. Calibration and validation are performed for (1991-1994, 2000-2004) and (1995-1998, 2005-2008) respectively using SUFI-2 method. Our results show that the surface runoff and percolation decreased by -21 and -9 %, whereas evapotranspiration increased by 3 % in the upper Betwa River basin during 2001-2018. A decrease in rainfall, runoff, and percolation will have considerable implications on regional water security.&lt;/p&gt;


Ethiopia has altered natural ecosystems through experiencing a huge amount of land use change has effect on the hydrological condition. Therefore, this study was initiated to compare the past and potential future change of land use with its effect the hydrological response of the Weib catchment which is found in the upper Genale Dawa River basin which covers a total area of 7407.42km2. The Soil and Water Assessment Tool model was used to compare the impact of land use change on stream flow of the study area. The study was used model by using readily available spatial and temporal data and calibrated against measured discharge. The analysis of land use change has shown that the Settlement area has increased from 12.8% to 30.8%, cultivated land from 10.8% to 39.1% between 1986 and 2010, while area of Forest has reduced from 32.5% to 9.4 % and Grassland from 20.9% to 12.3%. The performance of the model was evaluated based on performance rating criteria, coefficient of determination, Nash and Sutcliff efficiency values for monthly runoff were 0.85 and 0.81during calibration, 0.88 and 0.87 during validation, respectively. The evaluation of the model response to changes indicated that the mean wet monthly flow for 2010 land cover enlarged by 40.7 % from 1986 land cover. Similarly, the 1986 land cover mean month flow was higher by 10% than the 1995 land cover flow for wet months. The dry average monthly flow was less by 45.2 %, for 2010 and 26 % for 1995 land covers when compared to that of 1986 land cover. The rapid conversion of Forest and Grassland cover to Urban and cultivated land resulted in higher peak flow and less base flow on Weib river hydrology.


Hydrology ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 17 ◽  
Author(s):  
Sekela Twisa ◽  
Shija Kazumba ◽  
Mathew Kurian ◽  
Manfred F. Buchroithner

Understanding the variation in the hydrological response of a basin associated with land use changes is essential for developing management strategies for water resources. The impact of hydrological changes caused by expected land use changes may be severe for the Wami river system, given its role as a crucial area for water, providing food and livelihoods. The objective of this study is to examine the influence of land use changes on various elements of the hydrological processes of the basin. Hybrid classification, which includes unsupervised and supervised classification techniques, is used to process the images (2000 and 2016), while CA–Markov chain analysis is used to forecast and simulate the 2032 land use state. In the current study, a combined approach—including a Soil and Water Assessment Tool (SWAT) model and Partial Least Squares Regression (PLSR)—is used to explore the influences of individual land use classes on fluctuations in the hydrological components. From the study, it is evident that land use has changed across the basin since 2000 (which is expected to continue in 2032), as well as that the hydrological effects caused by land use changes were observed. It has been found that the major land use changes that affected hydrology components in the basin were expansion of cultivation land, built-up area and grassland, and decline in natural forests and woodland during the study period. These findings provide baseline information for decision-makers and stakeholders concerning land and water resources for better planning and management decisions in the basin resources’ use.


Proceedings ◽  
2020 ◽  
Vol 30 (1) ◽  
pp. 62
Author(s):  
Zahra Kalantari ◽  
Johanna Sörensen

The densification of urban areas has raised concerns over increased pluvial flooding. Flood risk in urban areas might increase under the impact of land use changes. Urbanisation involves the conversion of natural areas to impermeable areas, causing lower infiltration rates and increased runoff. When high-intensity rainfall exceeds the capacity of an urban drainage system, the runoff causes pluvial flooding in low-laying areas. In the present study, a long time series (i.e., 20 years) of geo-referenced flood claims from property owners has been collected and analysed in detail to assess flood risk as it relates to land use changes in urban areas. The flood claim data come from property owners with flood insurance that covers property loss from overland flooding, groundwater intrusion through basement walls, as well as flooding from drainage systems; these data serve as a proxy of flood severity. The spatial relationships between land use change and flood occurrences in different urban areas were analysed. Special emphasis was placed on examining how nature-based solutions and blue-green infrastructure relate to flood risk. The relationships are defined by a statistical method explaining the tendencies whereby land use change affects flood risk.


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 82 ◽  
Author(s):  
Youcai Kang ◽  
Jianen Gao ◽  
Hui Shao ◽  
Yuanyuan Zhang

Climate and land-use change are the two main driving forces that affect watershed hydrological processes. Separately assessing their impacts on hydrology is important for land-use planning and water resource management. In this research, the SWAT (Soil and Water Assessment Tool) and statistical methods were applied to evaluate the effects of climate and land-use change on surface hydrology in the hilly-gully region of the Loess Plateau. The results showed that surface runoff and soil water presented a downward tendency, while evapotranspiration (ET) presented an upward tendency in the Yanhe watershed from 1982 to 2012. Climate is one the dominant factors that influence surface runoff, especially in flooding periods. The average contribution rate of surface runoff on stream flow accounted for 55%, of which the flooding period accounted for 40%. The runoff coefficient declined by 0.21 after 2002 with the land-use change of cropland transformed to grassland and forestland. The soil water exhibited great fluctuation along the Yanhe watershed. In the upstream region, the land-use was the driving force to decline soil water, which reduced the soil water by 51%. Along the spatial distribution, it converted from land-use change to climate variability from northwest to southeast. The ET was more sensitive to land-use change than climate variability in all sub-basins, and increased by 209% with vegetation restoration. To prevent the ecosystem degradation and maintain the inherent ecological functions of rivers, quantitative assessment the influence of climate variability and land-use change on hydrology is of great importance. Such evaluations can provide insight into the extent of land use/cover change on regional water balance and develop appropriate watershed management strategies on the Loess Plateau.


2013 ◽  
Vol 10 (10) ◽  
pp. 6323-6337 ◽  
Author(s):  
S. J. Smith ◽  
A. Rothwell

Abstract. We examine historical and future land-use emissions using a simple mechanistic carbon-cycle model with regional and ecosystem specific parameterizations. We use the latest gridded data for historical and future land-use changes, which includes estimates for the impact of forest harvesting and secondary forest regrowth. Our central estimate of net terrestrial land-use change emissions, exclusive of climate–carbon feedbacks, is 250 GtC over the last 300 yr. This estimate is most sensitive to assumptions for preindustrial forest and soil carbon densities. We also find that land-use change emissions estimates are sensitive to the treatment of crop and pasture lands. These sensitivities also translate into differences in future terrestrial uptake in the RCP (representative concentration pathway) 4.5 land-use scenario. The estimate of future uptake obtained here is smaller than the native values from the GCAM (Global Change Assessment Model) integrated assessment model result due to lower net reforestation in the RCP4.5 gridded land-use data product.


2019 ◽  
Vol 11 (3) ◽  
pp. 696 ◽  
Author(s):  
Qun Liu ◽  
Zhaoping Yang ◽  
Cuirong Wang ◽  
Fang Han

In this study, we analyzed the temporal-spatial variations of the characteristics of land use change in central Asia over the past two decades. This was conducted using four indicators (change rate, equilibrium extent, dynamic index, and transfer direction) and a multi-scale correlation analysis method, which explained the impact of recent environmental transformations on land use changes. The results indicated that the integrated dynamic degree of land use increased by 2.2% from 1995 to 2015. The areas of cropland, water bodies, and artificial land increased, with rates of 1047 km2/a, 39 km2/a, and 129 km2/a, respectively. On the other hand, the areas of forest, grassland, and unused land decreased, with rates of 54 km2/a, 803 km2/a, and 359 km2/a, respectively. There were significant increases in cropland and water bodies from 1995 to 2005, while the amount of artificial land significantly increased from 2005 to 2015. The increased areas of cropland in Xinjiang were mainly converted from grassland and unused land from 1995 to 2015, while the artificial land increase was mainly a result of the conversion from cropland, grassland, and unused land. The area of cropland rapidly expanded in south Xinjiang, which has led to centroid position to move cropland in Xinjiang in a southwest direction. Economic development and the rapid growth of population size are the main factors responsible for the cropland increases in Xinjiang. Runoff variations have a key impact on cropland changes at the river basin scale, as seen in three typical river basins.


2020 ◽  
Vol 5 (2) ◽  
pp. 194-206
Author(s):  
Carolyne Wanessa Lins de Andrade Farias ◽  
Suzana Maria Gico Lima Montenegro ◽  
Abelardo Antônio de Assunção Montenegro ◽  
José Romualdo de Sousa Lima ◽  
Raghavan Srinivasan ◽  
...  

Land-use change has a significant influence on runoff process of any watershed, and the deepening of this theme is essential to assist decision making, within the scope of water resources management. The study was conducted for Mundaú River Basin (MRB) using the Soil and Water Assessment Tool (SWAT) model. The study aims to assess the issue of land-use change and its effect on evapotranspiration, surface runoff, and sediment yield. Input data like land use, topography, weather, and soil data features are required to undertake watershed simulation. Two scenarios of land use were analyzed over 30 years, which were: a regeneration scenario (referring to use in the year 1987) and another scene of degradation (relating to use in the year 2017). Land use maps for 1987 and 2017 were acquired from satellite images. Overall, during the last three decades, 76.4% of forest was lost in the MRB. The grazing land increased in 2017 at a few more than double the area that existed in 1987. Changes in land use, over the years, resulted in an increase of about 37% in the water yield of MRB. Changes have led to increased processes such as surface runoff and sediment yield and in the decrease of evapotranspiration. The spatial and temporal distribution of land use controls the water balance and sediment production in the MRB.


Author(s):  
J. Y. G. Dos Santos ◽  
R. M. Da Silva ◽  
J. G. Carvalho Neto ◽  
S. M. G. L. Montenegro ◽  
C. A. G. Santos ◽  
...  

Abstract. This study aims to assess the impact of the land-use changes between the periods 1967−1974 and 1997−2008 on the streamflow of Tapacurá catchment (northeastern Brazil) using the Soil and Water Assessment Tool (SWAT) model. The results show that the most sensitive parameters were the baseflow, Manning factor, time of concentration and soil evaporation compensation factor, which affect the catchment hydrology. The model calibration and validation were performed on a monthly basis, and the streamflow simulation showed a good level of accuracy for both periods. The obtained R2 and Nash-Sutcliffe Efficiency values for each period were respectively 0.82 and 0.81 for 1967−1974, and 0.93 and 0.92 for the period 1997−2008. The evaluation of the SWAT model response to the land cover has shown that the mean monthly flow, during the rainy seasons for 1967−1974, decreased when compared to 1997−2008.


Sign in / Sign up

Export Citation Format

Share Document