Ionic conductivity and structural characterization of Na1.5Nb0.3Zr1.5(PO4)3 with NASICON-type structure

1997 ◽  
Vol 100 (1-2) ◽  
pp. 127-134 ◽  
Author(s):  
C Veríssimo
2004 ◽  
Vol 19 (3) ◽  
pp. 272-279 ◽  
Author(s):  
Abderrahim Aatiq

The crystal structures of ASnFe(PO4)3 (A=Na2, Ca, Cd) phases, obtained by conventional solid state reaction techniques at (950–1000 °C), were determined at room temperature from X-ray powder diffraction (XRD) using Rietveld analysis. The three materials exhibit the Nasicon-type structure (R3c space group, Z=6) with a random distribution of Sn(Fe) within the framework. Hexagonal cell parameters when A=Na2, Ca and Cd are: a=8.628(1) Å, c=22.151(2) Å; a=8.569(1) Å, c=22.037(2) Å and a=8.587(1) Å, c=21.653(2) Å, respectively. Structural refinements show a partial occupancy of M1 (Na(1)) and M2 (Na(2)) sites in Na2SnFe(PO4)3 leading to the cationic distribution [Na1.22□1.78]M2[Na0.78□0.22]M1SnFe(PO4)3. Ca2+ ions are distributed only in the M1 site of [□3]M2[Ca]M1SnFe(PO4)3. From XRD data, it is difficult to unambiguously distinguish between Cd2+ and Sn4+ ions in CdSnFe(PO4)3. Nevertheless the overall set of cation–anion distances within the Nasicon framework clearly shows that the cationic distribution can be illustrated by the [□3]M2[Cd]M1SnFe(PO4)3 crystallographic formula. Distortion within the [Sn(Fe)(PO4)3] frameworks, in ASnFe(PO4)3 (A=Na2,Ca,Cd) phases, is shown to be related to the M1 site size. © 2004 International Centre for Diffraction Data.


2018 ◽  
Vol 30 (3) ◽  
pp. 485-489 ◽  
Author(s):  
Ekaterina A. Sirotkina ◽  
Luca Bindi ◽  
Andrey V. Bobrov ◽  
Anastasia Tamarova ◽  
Dmitry Yu. Pushcharovsky ◽  
...  

Ionics ◽  
2016 ◽  
Vol 23 (4) ◽  
pp. 837-846 ◽  
Author(s):  
R. Kahlaoui ◽  
K. Arbi ◽  
R. Jimenez ◽  
I. Sobrados ◽  
M. Mehnaoui ◽  
...  

Author(s):  
S. F. Hayes ◽  
M. D. Corwin ◽  
T. G. Schwan ◽  
D. W. Dorward ◽  
W. Burgdorfer

Characterization of Borrelia burgdorferi strains by means of negative staining EM has become an integral part of many studies related to the biology of the Lyme disease organism. However, relying solely upon negative staining to compare new isolates with prototype B31 or other borreliae is often unsatisfactory. To obtain more satisfactory results, we have relied upon a correlative approach encompassing a variety EM techniques, i.e., scanning for topographical features and cryotomy, negative staining and thin sectioning to provide a more complete structural characterization of B. burgdorferi.For characterization, isolates of B. burgdorferi were cultured in BSK II media from which they were removed by low speed centrifugation. The sedimented borrelia were carefully resuspended in stabilizing buffer so as to preserve their features for scanning and negative staining. Alternatively, others were prepared for conventional thin sectioning and for cryotomy using modified procedures. For thin sectioning, the fixative described by Ito, et al.


Sign in / Sign up

Export Citation Format

Share Document