Wind tunnel simulation requirements to assess wind loads on low-rise buildings

1998 ◽  
Vol 74-76 ◽  
pp. 675-685 ◽  
Author(s):  
H.W Tieleman ◽  
M.R Hajj ◽  
T.A Reinhold
2009 ◽  
Vol 31 (10) ◽  
pp. 2265-2274 ◽  
Author(s):  
Z. Liu ◽  
D.O. Prevatt ◽  
L.D. Aponte-Bermudez ◽  
K.R. Gurley ◽  
T.A. Reinhold ◽  
...  

Author(s):  
Peter L. Datin ◽  
Zhuzhao Liu ◽  
David O. Prevatt ◽  
F. J. Masters ◽  
K. Gurley ◽  
...  

2021 ◽  
Author(s):  
Thomas G. Ivanco ◽  
Donald F. Keller ◽  
Jennifer L. Pinkerton

Author(s):  
Yi Li ◽  
Chao Li ◽  
Qiu-Sheng Li ◽  
Yong-Gui Li ◽  
Fu-Bin Chen

This paper aims to systematically study the across-wind loads of rectangular-shaped tall buildings with aerodynamic modifications and propose refined mathematic models accordingly. This study takes the CAARC (Commonwealth Advisory Aeronautical Research Council) standard tall building as a benchmark model and conducts a series of pressure measurements on the benchmark model and four CAARC models with different round corner rates (5%, 10%, 15% and 20%) in a boundary layer wind tunnel to investigate the across-wind dynamic loads of the typical tall building with different corner modifications. Based on the experimental results of the five models, base moment coefficients, power spectral densities and vertical correlation coefficients of the across-wind loads are compared and discussed. The analyzed results shown that the across-wind aerodynamic performance of the tall buildings can be effectively improved as the rounded corner rate increases. Taking the corner round rate and terrain category as two basic variables, empirical formulas for estimating the across-wind dynamic loads of CAARC standard tall buildings with various rounded corners are proposed on the basis of the wind tunnel testing results. The accuracy and applicability of the proposed formulas are verified by comparisons between the empirical formulas and the experimental results.


2018 ◽  
Vol 22 (5) ◽  
pp. 1194-1210 ◽  
Author(s):  
XX Cheng ◽  
X Chen ◽  
YJ Ge ◽  
H Jiang ◽  
L Zhao

The traditional atmospheric boundary layer wind tunnel model test practice employs wind fields, the flow characteristics of which are in accordance with the empirical formulae of the atmospheric turbulence presented in Codes of Practice and monographs. However, the empirical formulae presented in Codes of Practice and monographs cannot truthfully reflect the high variations of the realistic atmospheric turbulence which sometimes aggravates wind effects on structures. Based on model tests conducted in a multiple-fan actively controlled wind tunnel, it is found that most wind effects on large cooling towers change monotonically with the increase in free-stream turbulence, and the model test results are more unfavorable for a flow field of low turbulence intensity than for a flow field of high turbulence intensity with respect to the measured coherences. Thus, a new atmospheric boundary layer wind tunnel simulation methodology for wind effects on circular cylindrical structures is proposed to overcome the deficiency of the traditional atmospheric boundary layer wind tunnel model tests. The new simulation methodology includes the simulation of two realistic atmospheric boundary layer flow fields with the highest and the lowest turbulence intensities in the wind tunnel and the envelopment of model test results obtained in the two flow fields (e.g. the mean and fluctuating wind pressure distributions, the power spectral density, the coherence function, and the correlation coefficient). The superiority of the new atmospheric boundary layer wind tunnel simulation methodology over the traditional model test practice is demonstrated by comparing the model test results with the full-scale measurement data.


Sign in / Sign up

Export Citation Format

Share Document