Large deviation principle in nonparametric estimation of marked point processes

1999 ◽  
Vol 41 (4) ◽  
pp. 383-388
Author(s):  
Danielle Florens ◽  
Huyên Pham
2016 ◽  
Vol 48 (4) ◽  
pp. 1061-1094 ◽  
Author(s):  
Christian Hirsch ◽  
Benedikt Jahnel ◽  
Paul Keeler ◽  
Robert I. A. Patterson

AbstractWe study large deviation principles for a model of wireless networks consisting of Poisson point processes of transmitters and receivers. To each transmitter we associate a family of connectable receivers whose signal-to-interference-and-noise ratio is larger than a certain connectivity threshold. First, we show a large deviation principle for the empirical measure of connectable receivers associated with transmitters in large boxes. Second, making use of the observation that the receivers connectable to the origin form a Cox point process, we derive a large deviation principle for the rescaled process of these receivers as the connection threshold tends to 0. Finally, we show how these results can be used to develop importance sampling algorithms that substantially reduce the variance for the estimation of probabilities of certain rare events such as users being unable to connect.


1993 ◽  
Vol 30 (02) ◽  
pp. 365-372 ◽  
Author(s):  
Søren Asmussen ◽  
Ger Koole

A Markovian arrival stream is a marked point process generated by the state transitions of a given Markovian environmental process and Poisson arrival rates depending on the environment. It is shown that to a given marked point process there is a sequence of such Markovian arrival streams with the property that as m →∞. Various related corollaries (involving stationarity, convergence of moments and ergodicity) and counterexamples are discussed as well.


Author(s):  
Andrei Khrennikov ◽  
Achref Majid

In this paper, we prove a large deviation principle for the background field in prequantum statistical field model. We show a number of examples by choosing a specific random field in our model.


2015 ◽  
Vol 47 (03) ◽  
pp. 761-786 ◽  
Author(s):  
Jose Blanchet ◽  
Jing Dong

We present the first class of perfect sampling (also known as exact simulation) algorithms for the steady-state distribution of non-Markovian loss systems. We use a variation of dominated coupling from the past. We first simulate a stationary infinite server system backwards in time and analyze the running time in heavy traffic. In particular, we are able to simulate stationary renewal marked point processes in unbounded regions. We then use the infinite server system as an upper bound process to simulate the loss system. The running time analysis of our perfect sampling algorithm for loss systems is performed in the quality-driven (QD) and the quality-and-efficiency-driven regimes. In both cases, we show that our algorithm achieves subexponential complexity as both the number of servers and the arrival rate increase. Moreover, in the QD regime, our algorithm achieves a nearly optimal rate of complexity.


2012 ◽  
Vol 44 (3) ◽  
pp. 603-616 ◽  
Author(s):  
F. Ballani ◽  
Z. Kabluchko ◽  
M. Schlather

We aim to link random fields and marked point processes, and, therefore, introduce a new class of stochastic processes which are defined on a random set in . Unlike for random fields, the mark covariance function of a random marked set is in general not positive definite. This implies that in many situations the use of simple geostatistical methods appears to be questionable. Surprisingly, for a special class of processes based on Gaussian random fields, we do have positive definiteness for the corresponding mark covariance function and mark correlation function.


Sign in / Sign up

Export Citation Format

Share Document