Interaction energy and force for a pair of colloidal particles in a bidisperse hard-sphere solvent

Author(s):  
D Henderson
1989 ◽  
Vol 155 ◽  
Author(s):  
Wan V. Shih ◽  
Wei-Heng Shih ◽  
Jun Liu ◽  
Ilhan A. Aksay

The stability of a colloidal suspension plays an important role in colloidal processing of materials. The stability of the colloidal fluid phase is especially vital in achieving high green densities. By colloidal fluid phase, we refer to a phase in which colloidal particles are well separated and free to move about by Brownian motion, By controlling parameters such as pH, salt concentration, and surfactants, one can achieve high packing (green) densities in the repulsive regime where the suspension is well dispersed as a colloidal fluid, and low green densities in the attractive regime where the suspensions are flocculated [1,2]. While there is increasing interest in using bimodal suspensions to improve green densities, neither the stability of a binary suspension as a colloidal fluid nor the stability effects on the green densities have been studied in depth as yet. Traditionally, the effect of using bimodal-particle-size distribution has only been considered in terms of geometrical packing developed by Furnas and others [3,4]. This model is a simple packing concept and is used and useful for hard sphere-like repulsive interparticle interactions. With the advances in powder technology, smaller and smaller particles are available for ceramic processing. Thus, the traditional consideration of geometrial packing for the green densities of bimodal suspensions may not be enough. The interaction between particles must be taken into account.


1999 ◽  
Vol 110 (16) ◽  
pp. 8189-8196 ◽  
Author(s):  
R. H. Gee ◽  
D. Henderson ◽  
A. Kovalenko

Open Physics ◽  
2012 ◽  
Vol 10 (3) ◽  
Author(s):  
Achille Giacometti

AbstractMotivated by recent experimental findings in chemical synthesis of colloidal particles, we draw an analogy between self-assembly processes occurring in biological systems (e.g. protein folding) and a new exciting possibility in the field of material science. We consider a self-assembly process whose elementary building blocks are decorated patchy colloids of various types, that spontaneously drive the system toward a unique and predetermined targeted macroscopic structure. To this aim, we discuss a simple theoretical model — the Kern-Frenkel model — describing a fluid of colloidal spherical particles with a pre-defined number and distribution of solvophobic and solvophilic regions on their surface. The solvophobic and solvophilic regions are described via a short-range square-well and a hard-sphere potentials, respectively. Integral equation and perturbation theories are presented to discuss structural and thermodynamical properties, with particular emphasis on the computation of the fluid-fluid (or gas-liquid) transition in the temperaturedensity plane. The model allows the description of both one and two attractive caps, as a function of the fraction of covered attractive surface, thus interpolating between a square-well and a hard-sphere fluid, upon changing the coverage. By comparison with Monte Carlo simulations, we assess the pros and the cons of both integral equation and perturbation theories in the present context of patchy colloids, where the computational effort for numerical simulations is rather demanding.


2016 ◽  
Vol 191 ◽  
pp. 325-349 ◽  
Author(s):  
Ljiljana Palangetic ◽  
Kirill Feldman ◽  
Raphael Schaller ◽  
Romana Kalt ◽  
Walter R. Caseri ◽  
...  

This work revisits the synthesis of the colloidal particles most commonly used for making model near hard suspensions or as building blocks of model colloidal gels, i.e. sterically stabilised poly(methyl methacrylate) (PMMA) particles. The synthesis of these particles is notoriously hard to control and generally the problems are ascribed to the difficulty in synthesising the graft stabiliser (PMMA-g-PHSA). In the present work, it is shown that for improving the reliability of the synthesis as a whole, control over the polycondensation of the 12-polyhydroxystearic acid is the key. By changing the catalyst and performing the polycondensation in the melt, the chain length of the 12-polyhydroxystearic acid is better controlled, as confirmed by 1H-NMR spectroscopy. Control over the graft copolymer now enables us to make small variations of near hard sphere colloids, for example spherical PMMA particles with essentially the same core size and different stabilising layer thicknesses can now be readily produced, imparting controlled particle softness. The PMMA spheres can be further employed to create, in gram scale quantities, colloidal building blocks having geometrical and/or chemical anisotropy by using a range of mechanical deformation methods. The versatility of the latter methods is demonstrated for polystyrene latex particles as well.


2015 ◽  
Vol 2015 ◽  
pp. 1-5
Author(s):  
Zhijun Zhang ◽  
Liang Zhao ◽  
Yanan Li ◽  
Mo Chu

The critical coagulation concentration (CCC) is defined as the minimum concentration of counterions to induce coagulation of colloidal particles. A modified calculation method was proposed to calculate CCC. Comparing the modified calculation method of CCC with the traditional calculation method, the critical condition of modified calculation method is stricter than traditional calculation method. The critical condition of modified calculation method is the maximum value of interaction force that is zero, and the critical condition of traditional calculation method is the maximum value of interaction energy that is zero. The calculation result of CCC based on interaction force is greater than the calculation value based on interaction energy. The CCC value of modified calculation method can ensure particles to coagulate definitely.


Sign in / Sign up

Export Citation Format

Share Document