Integrated approaches to the design of media and feeding strategies for fed-batch cultures of animal cells

1997 ◽  
Vol 15 (3) ◽  
pp. 109-113 ◽  
Author(s):  
Liangzhi Xie ◽  
Daniel I.C. Wang
2019 ◽  
Vol 68 (2) ◽  
pp. 269-280
Author(s):  
MÓNICA COSTAS MALVIDO ◽  
ELISA ALONSO GONZÁLEZ ◽  
RICARDO J. BENDAÑA JÁCOME ◽  
NELSON PÉREZ GUERRA

Two glucose-limited realkalized fed-batch cultures of Lactococcus lactis CECT 539 were carried out in a diluted whey medium (DW) using two different feeding media. The cultures were fed a mixture of a 400 g/l concentrated lactose and a concentrated mussel processing waste (CMPW, 101.72 g glucose/l) medium (fermentation I) or a CMPW medium supplemented with glucose and KH2PO4 up to concentrations of 400 g glucose/l and 3.21 g total phosphorus/l, respectively (fermentation II). For an accurate description and a better understanding of the kinetics of both cultures, the growth and product formation by L. lactis CECT 539 were both modelled, for the first time, as a function of the amounts of glucose (G) added and the pH gradient (VpH) generated in every realkalization and feeding cycle, by using an empirical polynomial model. With this modeling procedure, the kinetics of biomass, viable cell counts, nisin, lactic acid, acetic acid and butane-2,3-diol production in both cultures were successfully described (R2 values > 0.970) and interpreted for the first time. In addition, the optimum VpH and G values for each product were accurately calculated in the two realkalized fed-batch cultures. This approach appears to be useful for designing feeding strategies to enhance the productions of biomass, bacteriocin, and metabolites by the nisin-producing strain in wastes from the food industry.


2019 ◽  
Vol 39 (10) ◽  
pp. 54-56
Author(s):  
Shashi Kudugunti ◽  
Daniel Diggins ◽  
Jyoti Amatya ◽  
Jamie Peyser

2015 ◽  
Vol 14 (1) ◽  
Author(s):  
Stefano Mazzoleni ◽  
Carmine Landi ◽  
Fabrizio Cartenì ◽  
Elisabetta de Alteriis ◽  
Francesco Giannino ◽  
...  

1989 ◽  
Vol 11 (6) ◽  
pp. 443-448 ◽  
Author(s):  
Fatiou Toukourou ◽  
Luiz Donaduzzi ◽  
Andr� Miclo ◽  
Pierre Germain

Sign in / Sign up

Export Citation Format

Share Document