66 oral Image quality of a cone beam CT system for image guided radiotherapy

2003 ◽  
Vol 68 ◽  
pp. S28-S29
2020 ◽  
Vol 93 (1115) ◽  
pp. 20200412
Author(s):  
Maria Antonietta Piliero ◽  
Margherita Casiraghi ◽  
Davide Giovanni Bosetti ◽  
Simona Cima ◽  
Letizia Deantonio ◽  
...  

Objective: To evaluate the performance of low dose cone beam CT (CBCT) acquisition protocols for image-guided radiotherapy of prostate cancer. Methods: CBCT images of patients undergoing prostate cancer radiotherapy were acquired with the settings currently used in our department and two low dose settings at 50% and 63% lower exposure. Four experienced radiation oncologists and two radiation therapy technologists graded the images on five image quality characteristics. The scores were analysed through Visual Grading Regression, using the acquisition settings and the patient size as covariates. Results: The low dose acquisition settings have no impact on the image quality for patients with body profile length at hip level below 100 cm. Conclusions: A reduction of about 60% of the dose is feasible for patients with size below 100 cm. The visibility of low contrast features can be compromised if using the low dose acquisition settings for patients with hip size above 100 cm. Advances in knowledge: Low dose CBCT acquisition protocols for the pelvis, based on subjective evaluation of patient images.


Author(s):  
Abigail Bryce-Atkinson ◽  
Rianne De Jong ◽  
Tom Marchant ◽  
Gillian Whitfield ◽  
Marianne C Aznar ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hui-Ju Tien ◽  
Hsin-Chih Yang ◽  
Pei-Wei Shueng ◽  
Jyh-Cheng Chen

AbstractCone-beam computed tomography (CBCT) integrated with a linear accelerator is widely used to increase the accuracy of radiotherapy and plays an important role in image-guided radiotherapy (IGRT). For comparison with fan-beam computed tomography (FBCT), the image quality of CBCT is indistinct due to X-ray scattering, noise, and artefacts. We proposed a deep learning model, “Cycle-Deblur GAN”, combined with CycleGAN and Deblur-GAN models to improve the image quality of chest CBCT images. The 8706 CBCT and FBCT image pairs were used for training, and 1150 image pairs were used for testing in deep learning. The generated CBCT images from the Cycle-Deblur GAN model demonstrated closer CT values to FBCT in the lung, breast, mediastinum, and sternum compared to the CycleGAN and RED-CNN models. The quantitative evaluations of MAE, PSNR, and SSIM for CBCT generated from the Cycle-Deblur GAN model demonstrated better results than the CycleGAN and RED-CNN models. The Cycle-Deblur GAN model improved image quality and CT-value accuracy and preserved structural details for chest CBCT images.


2009 ◽  
Vol 4 (07) ◽  
pp. P07006-P07006 ◽  
Author(s):  
T -H Wu ◽  
C -H Liang ◽  
J -K Wu ◽  
C -Y Lien ◽  
B -H Yang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
pp. 35-47
Author(s):  
Ngoc Ha Bui ◽  
Tien Hung Bui ◽  
Thuy Duong Tran ◽  
Kim Tuan Tran ◽  
Ngoc Toan Tran

: 3D Filtered Back Projection (FBP) is a three-dimensional reconstruction algorithm usually used in Cone Beam Computed Tomography (CBCT) system. FBP is one of the most popular algorithms due to its reconstruction is fast while quality of the result is acceptable. It can also handle a more considerable amount of data with same computer performance with other algorithms. However, the quality of a reconstructed image by the FBP algorithm strongly depends on spatial filters and denoising filters applied to projections. In this paper an evaluation of the reconstructed image quality of the CBCT system by using different denoising filters and spatial filters to find out the best filters for the CBCT system is performed. The result shows that, there is a significantly decrease of the noise of projection with the combination of Median and Gaussian filters. The reconstructed image has high resolution with Cosine filter and becomes more sharpen with Hanning filter.


2013 ◽  
Vol 40 (2) ◽  
pp. 021912 ◽  
Author(s):  
Hao Li ◽  
William Giles ◽  
James Bowsher ◽  
Fang-Fang Yin

2010 ◽  
Vol 194 (2) ◽  
pp. W193-W201 ◽  
Author(s):  
Lifeng Yu ◽  
Thomas J. Vrieze ◽  
Michael R. Bruesewitz ◽  
James M. Kofler ◽  
David R. DeLone ◽  
...  

2011 ◽  
Author(s):  
G. J. Price ◽  
T. E. Marchant ◽  
J. M. Parkhurst ◽  
P. J. Sharrock ◽  
G. A. Whitfield ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document