PO-1687: Regional lung motion amplitude and variability assessment from a 4DMRI dataset

2020 ◽  
Vol 152 ◽  
pp. S929
Author(s):  
E. Colvill ◽  
S. Safai ◽  
O. Bieri ◽  
S. Kozerke ◽  
D.C. Weber ◽  
...  
2011 ◽  
Vol 40 (5) ◽  
pp. 1160-1169 ◽  
Author(s):  
Andreas Fouras ◽  
Beth J. Allison ◽  
Marcus J. Kitchen ◽  
Stephen Dubsky ◽  
Jayne Nguyen ◽  
...  

2013 ◽  
Vol 119 (1) ◽  
pp. 156-165 ◽  
Author(s):  
Mauro R. Tucci ◽  
Eduardo L. V. Costa ◽  
Tyler J. Wellman ◽  
Guido Musch ◽  
Tilo Winkler ◽  
...  

Abstract Background: Lung derecruitment is common during general anesthesia. Mechanical ventilation with physiological tidal volumes could magnify derecruitment, and produce lung dysfunction and inflammation. The authors used positron emission tomography to study the process of derecruitment in normal lungs ventilated for 16 h and the corresponding changes in regional lung perfusion and inflammation. Methods: Six anesthetized supine sheep were ventilated with VT = 8 ml/kg and positive end-expiratory pressure = 0. Transmission scans were performed at 2-h intervals to assess regional aeration. Emission scans were acquired at baseline and after 16 h for the following tracers: (1) 18F-fluorodeoxyglucose to evaluate lung inflammation and (2) 13NN to calculate regional perfusion and shunt fraction. Results: Gas fraction decreased from baseline to 16 h in dorsal (0.31 ± 0.13 to 0.14 ± 0.12, P < 0.01), but not in ventral regions (0.61 ± 0.03 to 0.63 ± 0.07, P = nonsignificant), with time constants of 1.5–44.6 h. Although the vertical distribution of relative perfusion did not change from baseline to 16 h, shunt increased in dorsal regions (0.34 ± 0.23 to 0.63 ± 0.35, P < 0.01). The average pulmonary net 18F-fluorodeoxyglucose uptake rate in six regions of interest along the ventral–dorsal direction increased from 3.4 ± 1.4 at baseline to 4.1 ± 1.5⋅10−3/min after 16 h (P < 0.01), and the corresponding average regions of interest 18F-fluorodeoxyglucose phosphorylation rate increased from 2.0 ± 0.2 to 2.5 ± 0.2⋅10−2/min (P < 0.01). Conclusions: When normal lungs are mechanically ventilated without positive end-expiratory pressure, loss of aeration occurs continuously for several hours and is preferentially localized to dorsal regions. Progressive lung derecruitment was associated with increased regional shunt, implying an insufficient hypoxic pulmonary vasoconstriction. The increased pulmonary net uptake and phosphorylation rates of 18F-fluorodeoxyglucose suggest an incipient inflammation in these initially normal lungs.


2020 ◽  
Vol 152 ◽  
pp. S863-S864
Author(s):  
Z. Van Kesteren ◽  
M.J. Parkes ◽  
M.F. Stevens ◽  
P. Balasupramaniam ◽  
J.G. Van den Aardweg ◽  
...  

CHEST Journal ◽  
2020 ◽  
Vol 158 (4) ◽  
pp. A1393-A1394
Author(s):  
Jonathan Dusting ◽  
Olivia Stephens ◽  
David Wenger ◽  
Chandni Doshi ◽  
John DeMarco ◽  
...  

2020 ◽  
pp. 204589402098404
Author(s):  
Siyi Yuan ◽  
Huaiwu He ◽  
Yun Long ◽  
Yi Chi ◽  
Inéz Frerichs ◽  
...  

Background: Several animal studies have shown that regional lung perfusion could be effectively estimated by the hypertonic saline contrast electrical impedance tomography (EIT) method. Here, we reported an application of this method to dynamically assess regional pulmonary perfusion defect in a patient with acute massive pulmonary embolism. Case presentation: A 68-year-old man experienced sudden dyspnea and cardiac arrest during out-of-bed physical activity on the first day after partial mediastinal tumor resection. Acute pulmonary embolism (PE) was suspected due to acute enlargement of right heart and fixed inferior venous cava measured with bedside ultrasound. The computed tomography pulmonary angiography further confirmed large embolism in both left and right main pulmonary arteries and branches. The regional time impedance curves, which were obtained by a bolus of 10ml 10% NaCl through the central venous catheter, were then analyzed to quantitatively assess regional perfusion. Normal ventilation distribution with massive defects in regional perfusion in both lungs was observed, leading to a ventilation-perfusion mismatch and low oxygenation index (PaO2/FiO2=86 mmHg) at the first day of PE. The anticoagulation was performed with heparin, and the patient’s condition (such as shock, dyspnea, hypoxemia etc.), regional lung perfusion defect and ventilation-perfusion mismatch continuously improved in the following days. Conclusions: This case implies that EIT might have the potential to assess and monitor regional perfusion for rapid diagnosis of fatal PE in clinical practice.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Kunlin Cao ◽  
Kai Ding ◽  
Joseph M. Reinhardt ◽  
Gary E. Christensen

Accurate pulmonary image registration is a challenging problem when the lungs have a deformation with large distance. In this work, we present a nonrigid volumetric registration algorithm to track lung motion between a pair of intrasubject CT images acquired at different inflation levels and introduce a new vesselness similarity cost that improves intensity-only registration. Volumetric CT datasets from six human subjects were used in this study. The performance of four intensity-only registration algorithms was compared with and without adding the vesselness similarity cost function. Matching accuracy was evaluated using landmarks, vessel tree, and fissure planes. The Jacobian determinant of the transformation was used to reveal the deformation pattern of local parenchymal tissue. The average matching error for intensity-only registration methods was on the order of 1 mm at landmarks and 1.5 mm on fissure planes. After adding the vesselness preserving cost function, the landmark and fissure positioning errors decreased approximately by 25% and 30%, respectively. The vesselness cost function effectively helped improve the registration accuracy in regions near thoracic cage and near the diaphragm for all the intensity-only registration algorithms tested and also helped produce more consistent and more reliable patterns of regional tissue deformation.


2009 ◽  
Vol 151 ◽  
pp. 012020 ◽  
Author(s):  
W Hofmann ◽  
R Winkler-Heil ◽  
J McAughey

Author(s):  
Kai Feng ◽  
Xueyuan Zhao ◽  
Zhiyang Guo

With increasing need for high-speed, high-temperature, and oil-free turbomachinery, gas foil bearings (GFBs) have been considered to be the best substitutes for traditional oil-lubricated bearings. A multi-cantilever foil bearing (MCFB), a novel GFB with multi-cantilever foil strips serving as the compliant underlying structure, was designed, fabricated, and tested. A series of static and dynamic load tests were conducted to measure the structural stiffness and equivalent viscous damping of the prototype MCFB. Experiments of static load versus deflection showed that the proposed bearing has a large mechanical energy dissipation capability and a pronounced nonlinear static stiffness that can prevents overly large motion amplitude of journal. Dynamic load tests evaluated the influence of motion amplitude, loading orientation and misalignment on the dynamic stiffness and equivalent viscous damping with respect to excitation frequency. The test results demonstrated that the dynamic stiffness and damping are strongly dependent on the excitation frequency. Three motion amplitudes were applied to the bearing housing to investigate the effects of motion amplitude on the dynamic characteristics. It is noted that the bearing dynamic stiffness and damping decreases with incrementally increasing motion amplitudes. A high level of misalignment can lead to larger static and dynamic bearing stiffness as well as to larger equivalent viscous damping. With dynamic loads applied to two orientations in the bearing midplane separately, the dynamic stiffness increases rapidly and the equivalent viscous damping declines slightly. These results indicate that the loading orientation is a non-negligible factor on the dynamic characteristics of MCFBs.


2009 ◽  
Vol 75 (1) ◽  
pp. 276-284 ◽  
Author(s):  
Jing Cai ◽  
Ke Sheng ◽  
Stanley H. Benedict ◽  
Paul W. Read ◽  
James M. Larner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document