Detection of tier 1 variants with circulating tumour (ct) DNA next generation sequencing (NGS) in UK non-small cell lung cancer (NSCLC) patients

Lung Cancer ◽  
2021 ◽  
Vol 156 ◽  
pp. S28
Author(s):  
Charlotte Milner-Watts ◽  
Hannah Lyons ◽  
Wanyuan Cui ◽  
Nadia Yousaf ◽  
Anna Minchom ◽  
...  
Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 5023
Author(s):  
Christoph Schubart ◽  
Robert Stöhr ◽  
Lars Tögel ◽  
Florian Fuchs ◽  
Horia Sirbu ◽  
...  

In non-small cell lung cancer (NSCLC), approximately 1–3% of cases harbor an increased gene copy number (GCN) of the MET gene. This alteration can be due to de novo amplification of the MET gene or can represent a secondary resistance mechanism in response to targeted therapies. To date, the gold standard method to evaluate the GCN of MET is fluorescence in situ hybridization (FISH). However, next-generation sequencing (NGS) is becoming more relevant to optimize therapy by revealing the mutational profile of each NSCLC. Using evaluable n = 205 NSCLC cases of a consecutive cohort, this study addressed the question of whether an amplicon based NGS assay can completely replace the FISH method regarding the classification of MET GCN status. Out of the 205 evaluable cases, only n = 9 cases (43.7%) of n = 16 high-level MET amplified cases assessed by FISH were classified as amplified by NGS. Cases harboring a MET GCN > 10 showed the best concordance when comparing FISH versus NGS (80%). This study confirms that an amplicon-based NGS assessment of the MET GCN detects high-level MET amplified cases harboring a MET GCN > 10 but fails to detect the various facets of MET gene amplification in the context of a therapy-induced resistance mechanism.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3804
Author(s):  
Riziero Esposito Abate ◽  
Daniela Frezzetti ◽  
Monica Rosaria Maiello ◽  
Marianna Gallo ◽  
Rosa Camerlingo ◽  
...  

Lung cancer (LC) is the main cause of death for cancer worldwide and non-small cell lung cancer (NSCLC) represents the most common histology. The discovery of genomic alterations in driver genes that offer the possibility of therapeutic intervention has completely changed the approach to the diagnosis and therapy of advanced NSCLC patients, and tumor molecular profiling has become mandatory for the choice of the most appropriate therapeutic strategy. However, in approximately 30% of NSCLC patients tumor tissue is inadequate for biomarker analysis. The development of highly sensitive next generation sequencing (NGS) technologies for the analysis of circulating cell-free DNA (cfDNA) is emerging as a valuable alternative to assess tumor molecular landscape in case of tissue unavailability. Additionally, cfDNA NGS testing can better recapitulate NSCLC heterogeneity as compared with tissue testing. In this review we describe the main advantages and limits of using NGS-based cfDNA analysis to guide the therapeutic decision-making process in advanced NSCLC patients, to monitor the response to therapy and to identify mechanisms of resistance early. Therefore, we provide evidence that the implementation of cfDNA NGS testing in clinical research and in the clinical practice can significantly improve precision medicine approaches in patients with advanced NSCLC.


Sign in / Sign up

Export Citation Format

Share Document