On the capability of spectrally resolved optical emission tomography for the diagnostic of nonisothermal low-pressure technological plasmas

1997 ◽  
Vol 97 (1-3) ◽  
pp. 742-748 ◽  
Author(s):  
W Schielke ◽  
G Röttig ◽  
I Bandlow ◽  
V Pickalov ◽  
A Ohl
Author(s):  
C. Monachon ◽  
M.S. Zielinski ◽  
D. Gachet ◽  
S. Sonderegger ◽  
S. Muckenhirn ◽  
...  

Abstract Quantitative cathodoluminescence (CL) microscopy is a new optical spectroscopy technique that measures electron beam-induced optical emission over large field of view with a spatial resolution close to that of a scanning electron microscope (SEM). Correlation of surface morphology (SE contrast) with spectrally resolved and highly material composition sensitive CL emission opens a new pathway in non-destructive failure and defect analysis at the nanometer scale. Here we present application of a modern CL microscope in defect and homogeneity metrology, as well as failure analysis in semiconducting electronic materials


2014 ◽  
Vol 13 (1) ◽  
Author(s):  
Petra Fojtíková ◽  
Lucie Řádková ◽  
Drahomíra Janová ◽  
František Krčma

AbstractThe aim of this work is the application of low-temperature low-pressure hydrogen plasma on artificially prepared corrosion layers, so called plasma chemical reduction. It is necessary to use samples with artificially prepared corrosion layers because it is impossible to use the real artifacts for fundamental research. The bronze was chosen as a sample material. Formation of corrosion layers on the bronze samples was carried out in concentrated hydrochloric acid vapors with the addition of sand. The radio-frequency hydrogen plasma was generated in the flowing regime at a pressure of 160 Pa. Different values of supplied power were chosen as well as different discharge modes: continuous or pulsed mode with varied duty cycles. By the combination of supplied power and mode factors, we selected two values of effective power. The process of plasma chemical reduction was monitored by optical emission spectroscopy (OES) and simultaneously, the sample temperature was measured. Rotational temperatures were calculated from OH radicals spectra. Changes in the structure and elemental composition were determined using scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX).


2007 ◽  
Vol 101 (5) ◽  
pp. 053306 ◽  
Author(s):  
A. Palmero ◽  
E. D. van Hattum ◽  
H. Rudolph ◽  
F. H. P. M. Habraken

Sign in / Sign up

Export Citation Format

Share Document