langmuir probe
Recently Published Documents


TOTAL DOCUMENTS

1157
(FIVE YEARS 135)

H-INDEX

49
(FIVE YEARS 4)

2022 ◽  
Vol 175 ◽  
pp. 113011
Author(s):  
L.Y. Meng ◽  
J.C. Xu ◽  
J.B. Liu ◽  
L. Cao ◽  
P. Wang ◽  
...  
Keyword(s):  

Author(s):  
Zhihui Huang ◽  
Jun Cheng ◽  
Na Wu ◽  
Longwen Yan ◽  
Hongbing Xu ◽  
...  

Abstract A newly designed divertor Langmuir probe diagnostic system has been installed in a rare closed divertor of the HL-2A tokamak and steadily operated for the study of divertor physics involved edge-localized mode (ELM) mitigation, detachment and redistribution of heat flux, etc. Two sets of probe arrays including 274 probe tips were placed at two ports (approximately 180° separated toroidally), and the spatial and temporal resolutions of this measurement system could reach 6 mm and 1 s, respectively. A novel design of the ceramic isolation ring can ensure reliable electrical insulation property between the graphite tip and the copper substrate plate where plasma impurities and the dust are deposited into the gaps for a long experimental time. Meanwhile, the condition monitoring and mode conversion between single and triple probe of the probe system could be conveniently implemented via a remote control station. The preliminary experimental result shows that the divertor Langmuir probe system is capable of measuring the high spatiotemporal parameters involved the plasma density, electron temperature, particle flux as well as heat flux during the ELMy H-mode discharges.


2021 ◽  
Vol 33 (12) ◽  
pp. 4157
Author(s):  
Jin Wang ◽  
Qing-He Zhang ◽  
Qing-Fu Du ◽  
Zan-Yang Xing

Author(s):  
Rui Yan ◽  
Yibin Guan ◽  
Yuanqing Miao ◽  
Zeren Zhima ◽  
Chao Xiong ◽  
...  

Author(s):  
Chenyao Jin ◽  
Chi-Shung Yip ◽  
Wei Zhang ◽  
Di Jiang ◽  
Guosheng Xu

Abstract Limited particle transit time is one of several limiting factors which determines the maximum temporal resolution of a Langmuir probe. In this work, we have revisited known fast sweep Langmuir probe techniques in a uniform, quiescent multi-dipole confined hot cathode discharge with two operation scenarios: one in which the probe sweeping frequency fsweep is much lower than the ion plasma frequency fpi, another one where fsweep is much greater than fpi, respectively. This allows the investigation of the effect of limited ion-motion on I-V traces. Serious distortions of I-V traces at high frequencies, previously claimed to be ion-motion limitation effect, was not found in the degree previously claimed unless shunt resistance is sufficiently high, despite achieving a ratio of ~ 3 between the probe sweeping frequency and the ion plasma frequency. On the other hand, evidences of sheath capacitance on the I-V trace have been observed. Distortions of I-V traces qualitatively agrees with predictions of sheath capacitance response to the sweeping voltage. Additionally, techniques in fast sweep Langmuir probe are briefly discussed. The comparison between a High-speed dual Langmuir probe (HDLP) and the single probe setup shows that the capacitive response can be removed via subtracting a leakage current for the single probe setup almost as effective as using an HDLP setup, but the HDLP setup does remain advantageous in its facilitation of better recovery of weak current signal common in low plasma density situations.


2021 ◽  
Vol 217 (8) ◽  
Author(s):  
R. Pfaff ◽  
P. Uribe ◽  
R. Fourre ◽  
J. Kujawski ◽  
N. Maynard ◽  
...  

AbstractThe Vector Electric Field Investigation (VEFI) on the C/NOFS satellite comprises a suite of sensors controlled by one central electronics box. The primary measurement consists of a vector DC and AC electric field detector which extends spherical sensors with embedded pre-amps at the ends of six, 9.5-m booms forming three orthogonal detectors with baselines of 20 m tip-to-tip each. The primary VEFI measurement is the DC electric field at 16 vectors/sec with an accuracy of 0.5 mV/m. The electric field receiver also measures the broad spectra of irregularities associated with equatorial spread-F and related ionospheric processes that create the scintillations responsible for the communication and navigation outages for which the C/NOFS mission is designed to understand and predict. The AC electric field measurements range from ELF to HF frequencies.VEFI includes a flux-gate magnetometer providing DC measurements at 1 vector/sec and AC-coupled measurements at 16 vector/sec, as well as a fast, fixed-bias Langmuir probe that serves as the input signal to trigger the VEFI burst memory collection of high time resolution wave data when plasma density depletions are encountered in the low latitude nighttime ionosphere. A bi-directional optical lightning detector designed by the University of Washington (UW) provides continuous average lightning counts at different irradiance levels as well as high time resolution optical lightning emissions captured in the burst memory. The VEFI central electronics box receives inputs from all of the sensors and includes a configurable burst memory with 1–8 channels at sample rates as high as 32 ks/s per channel. The VEFI instrument is thus one experiment with many sensors. All of the instruments were designed, built, and tested at the NASA/Goddard Space Flight Center with the exception of the lightning detector which was designed at UW. The entire VEFI instrument was delivered on budget in less than 2 years.VEFI included a number of technical advances and innovative features described in this article. These include: (1) Two independent sets of 3-axis, orthogonal electric field double probes; (2) Motor-driven, pre-formed cylinder booms housing signal wires that feed pre-amps within tip-mounted spherical sensors; (3) Extended shadow equalizers (2.5 times the sphere diameter) to mitigate photoelectron shadow mismatch for sun angles along the boom directions, particularly important at sunrise/sunset for a low inclination satellite; (4) DC-coupled electric field channels with “boosted” or pre-emphasized amplitude response at ELF frequencies; (5) Miniature multi-channel spectrum analyzers using hybrid technology; (6) Dual-channel optical lightning detector with on-board comparators and counters for 7 irradiance levels with high-time-resolution data capture; (7) Spherical Langmuir probe with Titanium Nitride-coated sensor element and guard; (8) Selectable data rates including 200 kbps (fast), 20 kbps (nominal), and 2 kbps (low for real-time TDRSS communication); and (9) Highly configurable burst memory with selectable channels, sample rates and number, duration, and precursor length of bursts, chosen based on best triggering algorithm “score”.This paper describes the various sensors that constitute the VEFI experiment suite and discusses their operation during the C/NOFS mission. Examples of data are included to illustrate the performance of the different sensors in space.


2021 ◽  
Vol 2064 (1) ◽  
pp. 012061
Author(s):  
A V Kaziev ◽  
D G Ageychenkov ◽  
A V Tumarkin ◽  
D V Kolodko ◽  
N S Sergeev ◽  
...  

Abstract The response of the ion current in the substrate region to the magnetic system configuration of a circular magnetron was studied during direct current sputtering of aluminum target. The unbalancing degree induced by changing of magnets’ positions was modelled with finite element methods. The ion saturation current in the substrate region showed more than twofold variation with unbalancing degree in the range 0.6–1.2. The dependence was non-monotonic, and the system was optimized to maximize the substrate ion current. The Langmuir probe diagnostics showed plasma density ~ 1016 m−3 in the optimized magnetic configuration.


2021 ◽  
Author(s):  
Robert Pfaff ◽  
Paulo Uribe ◽  
Remy Fourre ◽  
Joe Kujawski ◽  
Nelson Maynard ◽  
...  

Abstract The Vector Electric Field Investigation (VEFI) on the C/NOFS satellite comprises a suite of sensors controlled by one central electronics box. The primary measurement consists of a vector DC and AC electric field detector which extends spherical sensors with embedded pre-amps at the ends of six, 9.5-m booms forming three orthogonal detectors with baselines of 20 m tip-to-tip each. The primary VEFI measurement is the DC electric field at 16 vectors/sec with an accuracy of 0.5 mV/m. The electric field receiver also measures the broad spectra of irregularities associated with equatorial spread-F and related ionospheric processes that create the scintillations responsible for the communication and navigation outages for which the C/NOFS mission is designed to understand and predict. The AC electric field measurements range from ELF to HF frequencies. VEFI includes a flux-gate magnetometer providing DC measurements at 1 vector/sec and AC-coupled measurements at 16 vector/sec, as well as a fast, fixed-bias Langmuir probe that serves as the input signal to trigger the VEFI burst memory collection of high time resolution wave data when plasma density depletions are encountered in the low latitude nighttime ionosphere. A bi-directional optical lightning detector designed by the University of Washington (UW) provides continuous average lightning counts at different irradiance levels as well as high time resolution optical lightning emissions captured in the burst memory. The VEFI central electronics box receives inputs from all of the sensors and includes a configurable burst memory with 1-8 channels at sample rates as high as 32 ks/s per channel. The VEFI instrument is thus one experiment with many sensors. All of the instruments were designed, built, and tested at the NASA/Goddard Space Flight Center with the exception of the lightning detector which was designed at UW. The entire VEFI instrument was delivered on budget in less than 2 years.VEFI included a number of technical advances and innovative features described in this article. These include: (1)Two independent sets of 3-axis, orthogonal electric field double probes; (2) Motor-driven, pre-formed cylinder booms housing signal wires that feed pre-amps within tip-mounted spherical sensors; (3) Extended shadow equalizers (2.5 times the sphere diameter) to mitigate photoelectron shadow mismatch for sun angles along the boom directions, particularly important at sunrise/sunset for a low inclination satellite; (4) DC-coupled electric field channels with “boosted” or pre-emphasized amplitude response at ELF frequencies; (5) Miniature multi-channel spectrum analyzers using hybrid technology; (6) Dual-channel optical lightning detector with on-board comparators and counters for 7 irradiance levels with high-time-resolution data capture; (7) Spherical Langmuir probe with Titanium Nitride-coated sensor element and guard; (8) Selectable data rates including 200 kbps (fast), 20 kbps (nominal), and 2 kbps (low for real-time TDRSS communication); and (9) Highly configurable burst memory with selectable channels, sample rates and number, duration, and precursor length of bursts, chosen based on best triggering algorithm “score”.This paper describes the various sensors that constitute the VEFI experiment suite and discusses their operation during the C/NOFS mission. Examples of data are included to illustrate the performance of the different sensors in space.


Sign in / Sign up

Export Citation Format

Share Document