Edge detection in a hexagonal-image processing framework

2001 ◽  
Vol 19 (14) ◽  
pp. 1071-1081 ◽  
Author(s):  
Lee Middleton ◽  
Jayanthi Sivaswamy
Author(s):  
Y.A. Hamad ◽  
K.V. Simonov ◽  
A.S. Kents

The paper considers general approaches to image processing, analysis of visual data and computer vision. The main methods for detecting features and edges associated with these approaches are presented. A brief description of modern edge detection and classification algorithms suitable for isolating and characterizing the type of pathology in the lungs in medical images is also given.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 457
Author(s):  
Manuel Henriques ◽  
Duarte Valério ◽  
Paulo Gordo ◽  
Rui Melicio

Many image processing algorithms make use of derivatives. In such cases, fractional derivatives allow an extra degree of freedom, which can be used to obtain better results in applications such as edge detection. Published literature concentrates on grey-scale images; in this paper, algorithms of six fractional detectors for colour images are implemented, and their performance is illustrated. The algorithms are: Canny, Sobel, Roberts, Laplacian of Gaussian, CRONE, and fractional derivative.


2005 ◽  
Vol 15 (12) ◽  
pp. 3999-4006 ◽  
Author(s):  
FENG-JUAN CHEN ◽  
FANG-YUE CHEN ◽  
GUO-LONG HE

Some image processing research are restudied via CNN genes with five variables, and this include edge detection, corner detection, center point extraction and horizontal-vertical line detection. Although they were implemented with nine variables, the results of computer simulation show that the effect with five variables is identical to or better than that with nine variables.


2016 ◽  
Vol 56 (5) ◽  
pp. 409-416 ◽  
Author(s):  
Wei Wen ◽  
Siamak Khatibi

The current camera has made a huge progress in the sensor resolution and the lowluminance performance. However, we are still far from having an optimal camera as powerful as our eye is. The study of the evolution process of our visual system indicates attention to two major issues: the form and the density of the sensor. High contrast and optimal sampling properties of our visual spatial arrangement are related directly to the densely hexagonal form. In this paper, we propose a novel software-based method to create images on a compact dense hexagonal grid, derived from a simulated square sensor array by a virtual increase of the fill factor and a half a pixel shifting. After that, the orbit functions are proposed for a hexagonal image processing. The results show it is possible to achieve an image processing in the orbit domain and the generated hexagonal images are superior, in detection of curvature edges, to the square images. We believe that the orbit domain image processing has a great potential to be the standard processing for hexagonal images.


2020 ◽  
Author(s):  
Grigory Sharov ◽  
Dustin R. Morado ◽  
Marta Carroni ◽  
José Miguel de la Rosa-Trevín

Scipion is a modular image processing framework integrating several software packages under a unified interface while taking care of file formats and conversions. Here new developments and capabilities of the Scipion plugin for the Relion software are presented and illustrated with the image processing pipeline of published data. The user interfaces of Scipion and Relion are compared and the key differences highlighted, allowing this manuscript to be used as a guide for both new and experienced users of these software. Different streaming image processing options are also discussed demonstrating the flexibility of the Scipion framework.SynopsisAn overview of the Scipion plugin for the Relion software is presented and various capabilities of image processing within Scipion framework are discussed.


2011 ◽  
Vol 2 (1) ◽  
Author(s):  
Thomas Adi Purnomo Shidi ◽  
Suyoto Suyoto

Abstrak. Metode Baru Deteksi Tepi untuk Batik Indonesia. Didalam paper ini, diusulkan sebuah metode pendeteksi baru untuk motif batik. Deteksi tepi sudah sangat sering digunakan didalam pemrosesan gambar. Batik motif adalah salah satu contoh gambar yang memiliki bentuk yang unik dan menarik untuk dianalisis. Metode yang digunakan pada paper ini adalam metode canny dan prewit dan akan menghasilkan metode baru yaitu metode Thomas. Perbedaan antara metode dan hasil akan dilihat dari sisi ketepatan, qualitas hasil dan kejelasan. Contoh batik yang akan digunakan adalah motif parang, motife lereng dan udan liris. Ketiga batik tersebut memiliki pola  yang unik. Kata kunci : Canny, Prewitt, Thomas, Batik, Parang, Lereng, Udan liris. Abstract. New Edge Detection Method for Indonesian Batik. In this paper, we propose a new edge detection analysis method on batiks motif. Edge detection has been oftenly  used in computer vision and image processing. Indonesian  Batiks motif are some example of graphic picture that has unique pattern that interesting to analyse. The method that used for example on this paper are canny and prewit and produce a new method, thomas method. the different  amongs the method, the result of comparison appears on quality, accuracy and clarity. The example that we use are parang batiks motive, lereng batiks motive, and udan liris batiks motive. Three of batiks motive above are have unique pattern. Keywords: Canny, Prewitt, Thomas, Batik, Parang, Lereng, Udan liris.


Sign in / Sign up

Export Citation Format

Share Document