scholarly journals Hexagonal Image Processing in the Context of Machine Learning: Conception of a Biologically Inspired Hexagonal Deep Learning Framework

Author(s):  
Tobias Schlosser ◽  
Michael Friedrich ◽  
Danny Kowerko
Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3068
Author(s):  
Soumaya Dghim ◽  
Carlos M. Travieso-González ◽  
Radim Burget

The use of image processing tools, machine learning, and deep learning approaches has become very useful and robust in recent years. This paper introduces the detection of the Nosema disease, which is considered to be one of the most economically significant diseases today. This work shows a solution for recognizing and identifying Nosema cells between the other existing objects in the microscopic image. Two main strategies are examined. The first strategy uses image processing tools to extract the most valuable information and features from the dataset of microscopic images. Then, machine learning methods are applied, such as a neural network (ANN) and support vector machine (SVM) for detecting and classifying the Nosema disease cells. The second strategy explores deep learning and transfers learning. Several approaches were examined, including a convolutional neural network (CNN) classifier and several methods of transfer learning (AlexNet, VGG-16 and VGG-19), which were fine-tuned and applied to the object sub-images in order to identify the Nosema images from the other object images. The best accuracy was reached by the VGG-16 pre-trained neural network with 96.25%.


2018 ◽  
Vol 7 (2.7) ◽  
pp. 614 ◽  
Author(s):  
M Manoj krishna ◽  
M Neelima ◽  
M Harshali ◽  
M Venu Gopala Rao

The image classification is a classical problem of image processing, computer vision and machine learning fields. In this paper we study the image classification using deep learning. We use AlexNet architecture with convolutional neural networks for this purpose. Four test images are selected from the ImageNet database for the classification purpose. We cropped the images for various portion areas and conducted experiments. The results show the effectiveness of deep learning based image classification using AlexNet.  


2019 ◽  
Vol 63 (11) ◽  
pp. 1658-1667
Author(s):  
M J Castro-Bleda ◽  
S España-Boquera ◽  
J Pastor-Pellicer ◽  
F Zamora-Martínez

Abstract This paper presents the ‘NoisyOffice’ database. It consists of images of printed text documents with noise mainly caused by uncleanliness from a generic office, such as coffee stains and footprints on documents or folded and wrinkled sheets with degraded printed text. This corpus is intended to train and evaluate supervised learning methods for cleaning, binarization and enhancement of noisy images of grayscale text documents. As an example, several experiments of image enhancement and binarization are presented by using deep learning techniques. Also, double-resolution images are also provided for testing super-resolution methods. The corpus is freely available at UCI Machine Learning Repository. Finally, a challenge organized by Kaggle Inc. to denoise images, using the database, is described in order to show its suitability for benchmarking of image processing systems.


Author(s):  
Malusi Sibiya ◽  
Mbuyu Sumbwanyambe

Machine learning systems use different algorithms to detect the diseases affecting the plant leaves. Nevertheless, selecting a suitable machine learning framework differs from study to study, depending on the features and complexity of the software packages. This paper introduces a taxonomic inspection of the literature in deep learning frameworks for the detection of plant leaf diseases. The objective of this study is to identify the dominating software frameworks in the literature for modelling machine learning plant leaf disease detecting systems.


2018 ◽  
Vol 37 (6) ◽  
pp. 451-461 ◽  
Author(s):  
Zhen Wang ◽  
Haibin Di ◽  
Muhammad Amir Shafiq ◽  
Yazeed Alaudah ◽  
Ghassan AlRegib

As a process that identifies geologic structures of interest such as faults, salt domes, or elements of petroleum systems in general, seismic structural interpretation depends heavily on the domain knowledge and experience of interpreters as well as visual cues of geologic structures, such as texture and geometry. With the dramatic increase in size of seismic data acquired for hydrocarbon exploration, structural interpretation has become more time consuming and labor intensive. By treating seismic data as images rather than signal traces, researchers have been able to utilize advanced image-processing and machine-learning techniques to assist interpretation directly. In this paper, we mainly focus on the interpretation of two important geologic structures, faults and salt domes, and summarize interpretation workflows based on typical or advanced image-processing and machine-learning algorithms. In recent years, increasing computational power and the massive amount of available data have led to the rise of deep learning. Deep-learning models that simulate the human brain's biological neural networks can achieve state-of-the-art accuracy and even exceed human-level performance on numerous applications. The convolutional neural network — a form of deep-learning model that is effective in analyzing visual imagery — has been applied in fault and salt dome interpretation. At the end of this review, we provide insight and discussion on the future of structural interpretation.


2021 ◽  
Author(s):  
Ninja Begum ◽  
Manuj Kumar Hazarika

Image based assessment of food quality for wholesomeness, nutritional composition, suitability as raw material for processing, degree of processing, product aesthetics, consumer attractiveness etc., are some of the aspirations for applying machine learning in food technology. The initial contributions made by machine learning in the field of artificial intelligence are now more prominent through the techniques of deep learning. This review presents the contributions of machine learning in obtaining image processing based solutions in food technology and the relative advantages of deep learning over machine learning as the technique for solving complex problems like image recognition and image classification. The deep learning based solutions to the problems of image processing are highlighted as the enablers of disruptions in the design and development of different sorting, grading and dietary assessment tools.


2020 ◽  
Vol 22 (46) ◽  
pp. 26935-26943
Author(s):  
Yashaswi Pathak ◽  
Karandeep Singh Juneja ◽  
Girish Varma ◽  
Masahiro Ehara ◽  
U. Deva Priyakumar

A machine learning framework that generates material compositions exhibiting properties desired by the user.


Author(s):  
Shaila S. G. ◽  
Sunanda Rajkumari ◽  
Vadivel Ayyasamy

Deep learning is playing vital role with greater success in various applications, such as digital image processing, human-computer interaction, computer vision and natural language processing, robotics, biological applications, etc. Unlike traditional machine learning approaches, deep learning has effective ability of learning and makes better use of data set for feature extraction. Because of its repetitive learning ability, deep learning has become more popular in the present-day research works.


Author(s):  
Janani Viswanathan ◽  
N. Saranya ◽  
Abinaya Inbamani

Deep learning (DL) and artificial intelligence (AI) are emerging tools in the healthcare sector for medical diagnostics. This chapter elaborates on general reasons for the popularity of computational techniques such as deep learning and machine learning (ML) applications in the medical image processing domain. The initial part of this chapter focuses on reviewing the fundamental concepts of DL algorithms, competence with machine learning, need in healthcare, applications, and challenges in medical image processing. Doing so allows understanding the reasons for the construction of all of them and offers a different view on various domains in the medical sector. The tools and technology required for DL, selection, implementation, optimization, and testing are discussed with respect to an application of cancer detection. Thus, this chapter gives an overall vision of deep learning concepts related to biomedical research.


Sign in / Sign up

Export Citation Format

Share Document